Золы уноса. Рекомендации по применению золы, шлака и золошлаковой смеси тепловых электростанций в тяжелых бетонах и строительных растворах  Химический состав золы уноса


Кислые золы

При исследовании механизма гидратации зольных цементов выявлены все стадии процесса взаимодействия частицы добавки с цементной матрицей, характерные для пуццолановой реакции и протекающие на поверхности пуццолановой частицы, в данном случае зольной, соприкасающейся с твердеющим цементным камнем (контактная зона). Основные из этих стадий:

Адсорбция гидроксилов жидкой фазы цементного камня на катионных центрах стеклофазы на поверхности пуццоланы выход катионов стеклофазы в раствор и их замещение гидроксилами;

Возникновение на поверхности частиц вследствие накопления гидроксилов отрицательного заряда, адсорбция поверхностью пуццоланы щелочных ионов и кальция и образование вокруг частицы й-потенциала;

Формирование на поверхности пуццолановой частицы полупроницаемой пленки из первичных (щелочных) и вторичных (кальциевых) продуктов гидратации

Подсос воды под полупроницаемую пленку и возникновение под ней осмотического давления, следствием чего является разрушение пленки и образование вокруг

Частицы пуццоланы стерической поры толщиной 1–2 мкм, отделяющей частицу от цементного камня;

Постепенное заполнение поры продуктами гидратации цемента и пуццолановой реакции, вследствие чего частица пуццоланы срастается с цементным камнем;

Формирование после полного зарастания поры прочной и долговечной структуры напоминающей микробетон Юнга, где, однако, заполнителем является не непрогидратировавшийся остаток клинкера, а остаток частицы золы.

На рис. 5.1 наглядно видно образование и последующее «прошивание» новообразованиями стерической поры вокруг частицы золы.

Рис. 5.1 Зона перехода частицы золы в цементном камне

Процессы в контактной зоне определяют развитие прочности и другие СТС зольных цементов. Так, цементы с тонкодисперсной золой в ранние сроки уступают по прочности цементам с более грубодисперсной золой, однако в дальнейшем рост их прочностипроисходит более интенсивно. При этом степень гидратации в ранние сроки цементов с тонкодисперсной золой даже несколько выше Причиной снижения начальной прочности является образование большего числа сферических пор при использовании тонкодисперсной золы-уноса. Те же факторы определяют пониженные деформации усадки, повышеннуютрещиностойкость и другие СТС зольных цементов. Наличие в золе наряду с порами контактной зоны также большого числа полых частиц может вызвать снижение морозостойкости зольных цементов.

Большое влияние на долговечность бетона на основе зольных цементов оказывает содержание остатков несгоревшего топлива в золе.

Морфология кислых зольных частиц такова, что частички кокса в них вплавлены в алюмосиликатное стекло. Поэтому при затворении цемента углерод первоначально изолирован силикатным стеклом от цементной матрицы.

Однако после двух-трех лет службы бетона стеклообразная алюмосиликатная оболочка вокруг углеродного включения зольных частиц коррозирует, вследствие чего в бетоне образуется большое число микроэлементов, состоящих из пары углерод – металл и электролита – жидкой фазы бетона. Возникновение микропотенциалов и микротоков от таких элементов ведет к депассивации арматуры и, как следствие, к возникновению язвенной коррозии арматуры, особенно при работе бетона в воздушно-влажных условиях.

При воздушно-сухих или водных условиях твердения бетона коррозия арматуры бетона под влиянием углерода золы может и не наблюдаться в первом случае из-за недостатка жидкой фазы бетона, во втором – из-за недостаточного доступа кислорода к поверхности арматуры. Здесь стоит отметить, что в принципе по сходному механизму –депассивации поверхности арматуры – воздействует и ион Cl - , из-за чего его предельно допустимое содержание в цементе ограничивают величиной 0,1%. Такой же норматив обычно относят и к золе-уносу (см., например BS 3892, р. 1 или ТУ 34–70–10317–92).

Опасность возникновения коррозии стальной арматуры в бетоне вынуждает ограничивать содержание несгоревшего угля (ППП) в золе, используемой в качестве активной минеральной добавки к цементу. Поэтому нормативы по предельному значению ППП золы содержатся во всех стандартах на золу-унос, используемую в качестве добавки к цементу, и обычно составляют 3–5%.

Таким условиям по содержанию несгоревшего топлива удовлетворяют золы молодых

бурых углей, а также газовых и частично – длиннопламенных. В золах тощих углей содержание углерода достигает 18–20%, антрацита – 26–28%. Эти золы могут быть использованы только после сепарации.

Например, зола Луганской ГРЭС с общим значением ППП 28% сепарацией была разделена на две фракции: тонкую с ППП 5,8% и грубую с ППП 55%. В золе Волгоградской ТЭС при валовом значении ППП около 8% содержание угля в тонкой фракции составляло 3%, в крупной фракции достигало 35%. Первая в основном удовлетворяет требованиям к добавкам, вторая − может быть использована в качестве топлива, либо сырьевого материала, содержащего топливо.

Теплотворная способность крупных фракций золы тощих углей и антрацитов достигает от 7–10 до 14–15 тыс. кДж/кг.

Мировой опыт показывает, что для массового применения в качестве добавки к цементу необходима предварительная переработка или обогащение золы-уноса для превращения отхода от сжигания углей в полезный продукт, пригодный для дальнейшего применения.

Практикуются следующие методы корректировки качества золы:

1) Фракционирование с отделением крупной фракции золы может осуществляться с помощью воздушной сепарации. Это позволяет в несколько раз снизить содержание остаточного углерода в золе и повысить стабильность ее свойств.

2) Другим способом отделения частиц золы, содержащих большой остаток несгоревшего топлива, является магнитная или электростатическая сепарация. Выше было показано, каким образом частицы золы, обогащенные углеродом, приобретают магнитные свойства, позволяющие производить магнитную сепарацию золы. Электростатическая сепарация связана с тем, что в электрическом поле частицы золы, обогащенные углем, приобретают положительный заряд, а алюмосиликатные частицы, бедные углем – отрицательный. После электростатической сепарации содержание углерода в отсепарированной золе может быть снижено в 10– 15 раз. Существуют промышленные образцы электростатических сепараторов производительностью до 40 т/ч.

3) Флотация золы применяется для отделения от общей массы золы ксеносфер (полых частиц золы), которые являются весьма полезным и дорогостоящим продуктом, используемым при производстве особенно легких и теплоизоляционных бетонов и изделий. Недостатком способа является необходимость сушки золы после флотации.

4) Важным способом повышения качества золы является ее домол. Лучше, если домолу подвергается предварительно отсепарированная зола, освобожденная от большей части несгоревшего топлива. Домолнесепарированной золы целесообразен только при невысоком общем значении ее ППП, не превосходящем 3–5%. Домол позволяет не только повысить качество, но и стабилизировать химический состав золы, что особенно важно при производстве высокопрочных цементов и бетонов.

При отсутствии в России поставщиков тонкодисперсной сепарированной золы-уноса домол целесообразно осуществлять на цементном заводе, использующем золу-унос. Для этого необходимо выделить одну цементную мельницу, дооборудованную устройством для дозирования в нее золы. После домола золу можно не подавать вновь в цементную мельницу, выпускающую зольный цемент, но смешивать в нужном соотношении с бездобавочным цементом.

Основные золы

К основным золам относятся сланцевые золы Прибалтийской ГРЭС и Сланцевской ТЭЦ, золы молодых углей Канско-Ачинского и Итато-Боготольского бассейнов (Березовская ГРЭС, Красноярские ТЭЦ–1 и ТЭЦ–2 и др.), а также ТЭЦ и ГРЭС некоторых других регионов, работающих на сланцах, например, Сызранской.

Общим для них является содержание СаО в золе от 20 до 40% и более, в том числе 7–20% СаО св.

Петрографический и микрорентгеноспектральный анализы показали, что эти золы характеризуются сочетанием кислых зольных частиц, по морфологии и химическому составу аналогичных кислым золам-унос, и основных частиц, содержащих C 2 S, C 12 A 7 , СаО св и некоторое количество ангидрита, образовавшегося на их поверхности при контакте с дымовыми газами. Стеклофаза содержится главным образом в кислых частицах зол.

Исследованные золы содержали 10–14% β-С 2 S, 5–8% кварца, до 15% ангидрита, до 4% железистых соединений типа гематита и магнетита, от 8 до 28% СаО св, а также около одной трети по массе стеклофазы. Состав фракций золы определяется их дисперсностью. В тонких фракциях накапливаются ангидрит, оксиды щелочей и относительно мало СаО св, в крупных почти нет ангидрита, меньше щелочей, но значительно больше СаО св. Фракционирование зол по дисперсности может осуществляться на самих ТЭС в процессе золоулавливания. Например, на Прибалтийской ГРЭС тонкие фракции с удельной поверхностью 350 м 2 /кг и более и содержанием СаО св 7–8% осаждаются в 3–4 полях электрофильтра, в то время как грубодисперсная зола, содержащая 12–20% СаО св – в пылеосадительной камере, циклонах и 1–2 полях электрофильтра.

Пригодность основных зол для производства цемента обычно ставится под сомнение. Как правило, они используются в дорожном строительстве для укрепления грунта дорожных оснований, в сельском хозяйстве для известкования почв и т. п.

Однако исследованиями, выполненными в НИИЦементе и Фирме «Цемискон», установлено, что вследствие кратковременности пребывания в горячей зоне топки котла свободная известь в частицах золы не является мертво обожженной. При затворении водой ее гашение начинается уже через несколько часов, а через сутки гасится до 70% свободной извести. Ангидрит растворяется медленнее, затрудняя доступ воды к остальной части СаО св. Вследствие этого окончание гашения СаО св наблюдается только через 7–10 суток, в те же сроки заканчивается растворение ангидрита.

После окончания процессов гашения СаО св и растворения ангидрита в части гидратированных зол отчетливо фиксируются гипс и эттрингит. В других образцах ни один из этих минералов методом РФА или петрографически не обнаруживается, однако методом ИКС по полосе поглощения 1100– 1200 см –1 установлено наличие большого количества рентгеноаморфногоэттрингита. Исследования показали, что морфология продуктов гидратации определяется соотношением скорости гидратации СаО св, CaSO 4 , C 12 A 7 и алюмосодержащего стекла, причем существенно соотношение количества СаО св и SO 3 в золе.

Фактором, определяющим допустимый ввод основной золы и контролирующим прочность цемента с этой золой, является расширение цементов. Изучение фазового состава новообразований показало, что расширение МЦ с основной золой имеет гидроксидную и сульфоалюминатную составляющие.

Оксидное расширение в основном происходит в первые сутки гидратации и полностью завершается к 7–10 суткам, когда структура цементного камня еще способна к деформациям. Часть эттрингита образуется после 7 суток. При этом могут образовываться хорошо оформленные кристаллы эттрингита, что ведет к возрастанию прочности, либо рыхлые бесформенные пучки, из которых позднее формируются иглы. При формировании эттрингита в виде квазиаморфных пучков расширение цемента значительно возрастает и он, несмотря на весьма высокую прочность, не выдерживает испытания на равномерность изменения объема.

Было установлено, что формирование игольчатых кристаллов эттрингита может быть ускорено, а линейное расширение цементов снижено при оптимизации отношения SO 3 /CaO св в цементе (сульфоизвестковый модуль). Исследование влияния этого модуля на линейное расширение и прочность цемента показало, что максимум прочности достигается при величине модуля 1,1–1,2. При этих значениях равномерность изменения объема обеспечивается даже при довольно значительной величине линейного расширения. Например, при содержании в цементе основной золы с 14,4% СаО св в количестве20% прочность цемента при испытаниях по ГОСТ 310.4 составила в 3-суточном возрасте 39,4, в 28-суточном – 59,6, в 6-месячном – 77,4 МПа. Прочность после пропаривания –56,6 МПа. Линейное расширение составило 0,22% в 28-суточном возрасте и 0,45% после ТВО.

Ввод в цемент основной золы должен быть таким, чтобы содержание СаО св в цементе не превышало 3,0, максимум – 3,5%. При большем содержании СаО св расширение является чрезмерным даже при оптимизации ввода гипса и формировании эттрингита в виде игольчатых кристаллических сростков. Это может привести к неравномерности изменения объема цемента.

Велико влияние дисперсности цемента на линейное расширение и прочность цементов с основной золой. С увеличением дисперсности с 300 до 400 м 2 /кг линейное расширение снижается в среднем на 30–35%, а прочность цементов возрастает на 10–17%.

Таким образом, установлены условия, при которых достигается высокое качество цементов с основной золой:

Сульфоизвестковый модуль 1,1 – 1,2;

Дисперсность не менее 350 м 2 /кг. Выводы проверены и подтверждены какв лабораторных, так и в производственных условиях при изготовлении сборного железобетона класса прочности В25 – В30. Наблюдения за состоянием этих изделий после эксплуатации в несущих конструкциях зданий в течение 3-х лет не выявили каких-либо повреждений бетона на цементе с основной золой.

Специальные зольные цементы

В связи с тем, что при гидратации цементов с основной золой наблюдается значительное линейное расширение, были проведены исследования по получению зольных напрягающих и безусадочных цементов, а также цементов с регулируемым расширением. Такие цементы нужны для получения плотных водонепроницаемых бетонов.

Показано, что цементы оптимального состава, содержащие 20–25% основной золы с содержанием СаО св около 15% и удовлетворяющие требованиям, указанным выше имеют энергию самонапряжения в пределах 1,5–3 МПа и могут применяться как напрягающие цементы с малой энергией самонапряжения. При увеличении содержания золы в цементе до 25% или содержания СаО св в золе до 20–25% самонапряжение возрастает до 3–5 МПа, что соответствует НЦ 20 и НЦ 40 со средним и высоким самонапряжением.

Для получения безусадочных цементов и цементов с регулируемым расширением в состав цемента вводили комплексную добавку, состоящую из высококальциевой основной золы, шлака или трепела и кварцевого песка.

Соотношение компонентов определяет величину линейного расширения, самонапряжение и прочность цемента. Исследовали составы, содержавшие шлак в количестве 5–15%, золу 5–25%, песок 3–11%, трепел 5–10% Прочность цементов в 28-суточном возрасте составляла 42–56 МПа, после пропаривания – 29–49 МПа.

Определены наиболее эффективные составы цементов с комплексной добавкой клинкер – 60 –80%, высококальциевая зола с содержанием СаО св не более 18% – 10–25%, шлак гранулированный – 5–25%, кварцевый песок–3–10%.

Должны быть также выполнены условия указанные выше. Цементы такого состава являются безусадочными либо слаборасширяющимися и позволяют получить бетон с водонепроницаемостью W8 и более.

Дозировка золы

Для кислой золы класса А с ППП не более 5% содержание золы в цементе обычно составляет 10–20%. Такое количество золы допускает в цементе типа СЕМ II европейский стандарт EN 197–1, российские ГОСТ 31108 и ГОСТ 10178, китайский GB 175 и другие. В специальных зольных цементах содержание золы может достигать 40–50%.

Тонкую фракцию кислой золы можно смешивать с бездобавочным цементом в количестве до 20% от массы готового продукта, грубую – использовать в качестве компонента сырьевой смеси, определяя необходимую дозировку этой фракции золы расчетом состава сырьевой смеси.

Микрокремнезем

Цементы и бетоны с содержанием микрокремнезема. Ультрамелкие пуццолановые побочные продукты промышленности кремниевых сплавов обозначаются, по крайней мере, 17 различными названиями, некоторые из них представлены в таблице 1. В научном мире термин "конденсированные пары кремнезема" сейчас применяется по отношению к парам, получаемым из целого ряда сплавов. Большинство исследований влияния этих материалов на бетон посвящено концентрированным парам кремнезема, для обозначения которых становится общепринятым термин "микрокремнезем". Для удобства в данном тексте материалы, представляющие особый интерес для бетонной промышленности, называются "микрокремнезем".

Альтернативные названия микрокремнезема:

Кремнеземистая мука;

Кремнеземистая пыль;

Кремнеземистые пары;

Пары кремнезема;

Летучий кремнезем;

Кремнезем из электродуговых печей;

Пирогенный кремнезем;

Конденсированные пары кремнезема.

История. Норвежский Технологический Институт изучает свойства бетона с содержанием микрокремнезема уже 35 лет. Расширение применения порошка микрокремнезема в готовых бетонных смесях с 1975 привело к принятию норвежских стандартов для микрокремнезема в цементе (1976) и в бетоне (1978). В Канаде использование микрокремнезема в бетоне было одобрено в 1981, в том же году первые промышленные смеси портландцемент/микрокремнезем были произведены в Исландии. В Канаде такие смеси появились в 1982. Микрокремнезем используется везде – от бетонных блоков до нефтяных сооружений, и его рабочие качества исследуются и проверяются по всему миру.

Источники и производство. Кремний, феррокремний и другие кремниевые сплавы вырабатываются в электродуговых печах. Чистый кварц плавится с углем и рудами при очень высоких температурах, и микрокремнезем собирается путем охлаждения и фильтрования печных газов. Заводы кремниевых сплавов потребляют огромное количество энергии, поэтому они обычно расположены там, где доступна дешевая гидроэлектроэнергия. В число ведущих производителей входят Норвегия, Канада и Исландия.

Химические и физические характеристики. Вид сплава, вырабатываемого в печи, является основным фактором, определяющим характер материала, собранного в рукавных фильтрах. Печи для производства феррокремниевых сплавов с содержанием кремния свыше 72% дают микрокремнезем, очень сходный по своим свойствам и составу. Конденсированные пары кальциево-кремниевых, феррохромо-кремниевых и кремниево-марганцевых сплавов могут обладать сходными физическими характеристиками, но их химический состав может существенно отличаться.

Частицы микрокремнезема имеют гладкую поверхность и сферическую форму. Средний размер частиц составляет 0,1–0,2 микрон, то есть они в 50–100 раз мельче цемента или летучей золы, а удельная площадь поверхности составляет от 13000 до 25000 м 2 /кг. Порошок, собранный в фильтрах, фактически состоит из рыхлых агломератов с очень низкой насыпной плотностью.

По сравнению с другими вяжущими материалами, микрокремнезем отличается очень высоким содержанием реактивного кремнезема и мелкостью. На содержание углерода и, следовательно, цвет влияет главным образом наличие или отсутствие в печи системы теплорегенерации. Не считая этого, изменчивость материала в зависимости от особенностей печи или состава сплава крайне невысока.

Виды и сорта. В настоящее время в Великобритании имеется в основном микрокремнезем из чистых сплавов. Чистейший продукт поступает с металло-кремниевого производства, отличается высокой ценой и ограниченной сферой применения – промышленность огнеупорных материалов. Микрокремнезем для использования в бетоне получают из феррокремниевых сплавов. Некоторые поставщики микрокремнезема смешивают материал из различных источников для получения продукта постоянного состава с разницей в содержании реактивного кремнезема ±2%.

Пары сплавов с высоким содержанием кальция или марганца настолько отличаются по химическому составу по сравнению с чистым микрокремнеземом, что их следует рассматривать как различные материалы. Проведены небольшие исследования их применения в бетоне и очевидно, что их пуццолановая активность гораздо ниже.

Суспензии в сравнении с порошками. Необработанный микрокремнезем очень трудно транспортировать и хранить. Был сделан ряд попыток получить более удобный в обращении материал с помощью таких методов как микрогранулирование путем длительной аэрации, механическое гранулирование и агломерация путем высушивания суспензий. Хотя с такими материалами и легче обращаться, но они все же плохо рассеиваются в бетонной смеси и, как правило, необходимо использовать пластификатор или суперпластификатор.

Суспензии микрокремнезема, по-видимому, представляют собой наиболее практичную форму для крупномасштабного производства обычного бетона. Сырой микрокремнезем смешивается с равным количеством воды и суспензируется с помощью высокомощных смесительных установок. Для обеспечения химической и физической стабильности суспензии водородный показатель pH должен находиться в пределах от 4,5 до 5,5.

Существуют суспензии, включающие в себя целый ряд химических добавок, но недавний опыт на участке в Великобритании показывает, что обычный бетон можно получить при добавлении одной водной суспензии. Удельный вес суспензий составляет 1,3– 1,4, а вязкость – 20 секунд при 4мм чашке, то есть показатели сравнительно низкие.

Воздействие на свойства бетона. Суспензии и порошки существенно отличаются только по своему воздействию на пластичный бетон. Их влияние на свойства затвердевшего бетона одинаково. Поскольку суспензии микрокремнезема без примесей, вероятно, представляют наибольший интерес для производителей бетона, в остальной части текста термин "микрокремнезем" употребляется по отношении к 50% водной суспензии, если не указано иное. Дозировка микрокремнезема выражается в процентном содержании твердого микрокремнезема от массы цемента. Вес добавляемой в смесь суспензии в два раза превышает вес требуемого твердого микрокремнезема.

Пластические свойства . Правильно составленная бетонная смесь, содержащая менее 300 кг/м 3 обычного портландцемента и менее 10% микрокремнезема, практически не отличается по водопотребности для эквивалентной номинальной осадки конуса по сравнению с обычными смесями с тем же общим содержанием вяжущих. Даже в таких небольших дозах микрокремнезем обеспечивает отличительные "квазитиксотропные" свойства смеси. На первый взгляд свежеприготовленная бетонная смесь кажется более жесткой, чем показывают результаты теста осадки конуса, однако, ее намного легче подавать насосом, укладывать и отделывать. На участке наблюдалось аномальное поведение смеси, такое как повышение удобообрабатываемости после длительного перемешивания или прохождения через бетононасос.

Жирные смеси с более высоким содержанием микрокремнезема и/или цемента могут стать вязкими и требовать больше усилий для укладки и уплотнения, в таком случае рекомендуется использовать пластификаторы.

Рассеявшись, мельчайшие частицы микрокремнезема уплотняют и стабилизируют смесь и существенно снижают выступание воды и расслоение. В жирных смесях это может привести к образованию трещин при пластической усадке, поскольку вода, испаряющаяся с поверхности, не заменяется выступающей водой. В жаркую или ветреную погоду необходимо уделять особое внимание защите и выдерживанию бетона.

Нарастание прочности. Как и все пуццолановые материалы, микрокремнезем вступает в реакцию с гидроокисью кальция Ca(OH) 2 , освобождаемой при гидратации портландцемента для образования вяжущих соединений. Очень высокая чистота и мелкость микрокремнезема способствует более эффективной и быстрой реакции. При надлежащем рассеивании тысячи реактивных сферических микрочастиц окружают каждое зерно цемента, уплотняя цементный раствор, заполняя пустоты прочными продуктами гидратации и улучшая сцепление с заполнителями. Степень пуццолановой активности зависит от содержания реактивного кремнезема, но на практике между двумя видами материала с высоким содержанием кремнезема существует довольно незначительное различие.

Микрокремнезем может обеспечить прочность на сжатие, намного превышающую прочность обычных бетонов, и здесь ограничивающим фактором является только прочность заполнителя. При использовании природных заполнителей достигается прочность свыше 150 МПа, а при использовании специальных высокопрочных заполнителей можно достичь прочности 300 МПа.

Темпы нарастания прочности обычного бетона с содержанием микрокремнезема слегка отличается по сравнению с современными бетонами на обычном портландцементе. Обычно через 7 дней он приобретает только 55–65% от 28-дневной прочности при выдерживании при температуре 20 о С. Основная пуццолановая активность, по-видимому, протекает между 7 и 20 днями. Микрокремнезем зачастую используется в сочетании с летучей золой и гранулированным доменным шлаком для достижения более приемлемых темпов нарастания прочности.

Опыт других стран, недавно получивший подтверждение в Великобритании, показал, что 1 кг микрокремнезема может обеспечивать такую же прочность, как 3–5 кг обычного портландцемента, в смесях одинаковой удобообрабатываемости при умеренном содержании микрокремнезема и цемента в обеих смесях. На эту вяжущую эффективность или К-фактор оказывает влияние содержание обоих материалов, но при содержании обычного портландцемента 200–300 кг/м 3 и микрокремнезема – менее 10%, значение К-фактора может составлять около 4. В Норвегии средняя дозировка микрокремнезема для смесей обычной прочности составляет 8%.

При добавлении микрокремнезема в количестве до 30% в сочетании с суперпластификаторами можно получить смеси с отношением вода/вяжущие ниже 0,3. Такие бетоны могут достигать очень высокой ранней прочности и они нашли широкое применение там, где осуществляется выдерживание во влажном режиме. Выдерживание в сухом режиме ведет к самовысушиванию и результаты ранних тестов могут оказаться разочаровывающими.

Известно, что пуццолан более чувствителен к изменениям температуры, нежели портландцемент, и микрокремнезем– не исключение. При низких температурах пуццолановая реакция замедляется, а при высоких – ускоряется, причем в обоих случаях значительнее по сравнению с портландцементом. Ни о каких существенных неблагоприятных эффектах на время схватывания обычных бетонов с содержанием микрокремнезема в условиях стран ЕС не сообщается.

Щелочность. Доказано, что микрокремнезем оказывает существенное влияние на щелочность воды в порах цементного геля. Пуццолановая реакция, по-видимому, приводит к образованию геля с высоким содержанием кремнезема, связывающего щелочные металлы, и возможно, с высоким содержанием связанной воды. Уровень водородного показателя pH воды в порах бетона на обычном портландцементе равен 14. При добавлении даже умеренного количества микрокремнезема он очень быстро снижается до 13. При добавлении свыше 15% микрокремнезем в конечном счете забирает из воды в порах практически все ионы щелочных металлов, понижая уровень pH до 12,5. При добавлении около 25% микрокремнезем нейтрализует всю свободную известь, освобожденную силикатами портландцемента. При этом общий уровень pH бетона едва ли снижается до того, что это оказывает неблагоприятное воздействие на инертность арматуры.

Проницаемость. Эффект заполнения пор, создаваемый пуццолановыми сферическими микрочастицами, способствует значительному уменьшению капиллярной пористости и проницаемости бетона. Фактически непроницаемый бетон можно получить при умеренном содержании микрокремнезема и сравнительно низком содержании обычного портландцемента. Поскольку микрокремнезем оказывает большее влияние на проницаемость, чем на прочность, бетон с содержанием микрокремнезема всегда будет гораздо менее проницаемым, чем бетон эквивалентной прочности на обычном портландцементе.

Защита арматуры. Теоретически, пониженная щелочность бетона с содержанием микрокремнезема должна ослаблять его устойчивость к карбонизации и хлоридам. В Норвегии и Швеции исследования бетонных конструкций в возрасте до 12 лет показали, что высококачественные бетоны с содержанием микрокремнезема обладают не меньшей устойчивостью к карбонизации, чем бетоны такой же прочности на обычном портландцементе, и гораздо лучше предотвращают проникновение хлоридов из морской воды. Однако, плохо выдержанный бетон с микрокремнеземом в этом отношении страдает больше, нежели бетон на обычном портландцементе.

Проведена масса лабораторных измерений коррозии арматуры, но предсказать ее рабочие характеристики в реальных условиях трудно. Хотя можно с уверенностью сказать, что при условии надлежащего выдерживания, способность бетона с микрокремнеземом защищать стальную арматуру не будет существенно отличаться по сравнению с бетоном той же прочности на обычном портландцементе.

Морозостойкость. Низкая проницаемость и повышенная плотность цементного камня обеспечивает прекрасную морозостойкость бетона с микрокремнеземом. По всей видимости, не существует теоретической несовместимости микрокремнезема с воздухововлекающими добавками, в действительности стабильная реологическая структура пластичного бетона с микрокремнеземом должна уменьшать потерю вовлеченного воздуха при транспортировке и вибрировании.

Химическое воздействие. Известно, что низкая проницаемость и низкое содержание свободной извести повышает устойчивость бетона к воздействию агрессивных химических веществ. Бетон с содержанием микрокремнезема обладает этими качествами и проявляет прекрасную устойчивость к воздействию целого ряда веществ. Долгосрочные полевые испытания в Норвегии показали, что по своей потенциальной устойчивости к сульфатам он равен сульфатостойкому портландцементу.

Кремнеземная пыль (КП), называемая также микрокремнеземом или микронаполнителем, представляет собой побочный продукт металлургического производства при выплавке ферросилиция и его сплавов, образующийся в результате восстановления углеродом кварца высокой чистоты в электропечах. В процессе выплавки кремниевых сплавов некоторая часть моноокиси кремния SiO переходит в газообразное состояние и, подвергаясь окислению и конденсации, образует чрезвычайно мелкий продукт в виде шарообразных частиц с высоким содержанием аморфного кремнезема. Новые возможности использования КП тесно связаны с прогрессом в области создания эффективных суперпластификаторов– их сочетание дало толчок к созданию бетонов нового поколения, обладающих высокой прочностью (от 60 до 150МПа), повышенной удобоукладываемостью и долговечностью.

Кремнеземная пыль, как сказано выше, представляет собой очень мелкие шарообразные частички аморфного кремнезема со средней удельной поверхностью около 20 м 2 /г. Тонкость КП можно проиллюстрировать сравнением с другими порошкообразными материалами:

Кремнеземная пыль 140000–300000 см 2 /г;

Золы уноса 4000–7000 см 2 /г;

Портландцемент 3000–4000 см 2 /г.

Гранулометрический состав КП свидетельствует о том, что размер большинства частиц не превышает 1 микрона, а средний размер частиц составляет около 0,1 микрона, т.е. примерно в 100 раз меньше среднего размера зерна цемента. Кремнеземную пыль можно получать в трех состояниях - природном и уплотненном, а также в виде водной суспензии (около 50%). Плотность КП в естественном состоянии составляет примерно 2,2 г/см 3 (портландцемента – 3,1 г/см 3), а объемная плотность в рыхлом состоянии – 130–430 кг/м 3 (цемента – 1500 кг/м 3). За счет уплотнения можно повысить плотность до 480–720 кг/м 3 . Весьма мелкий гранулометрический состав и значительная удельная поверхность зерен аморфного кремнезема обусловливают высокие пуццолановые свойства и позитивное влияние КП на свойства бетона. Кремнезем в таком виде легко вступает в реакцию с гидроокисью кальция, высвобождаемой в процессе гидратации цемента, повышая тем самым количество гидратированных силикатов типа CSH в результате реакции:

SiO 2 + xCa(OH) 2 + yH 2 O↔xCaO + SiO 2 + (x+y)H 2 O

Эта вновь образовавшаяся фаза CSH характеризуется меньшим отношением C/S (даже до 1,4), чем CSH в результате гидратации цемента. Как следствие, она обладает способностью присоединять другие ионы, особенно щелочи, что имеет существенное значение в связи с применением КП для уменьшения расширения, вызванного реакциями между щелочами и заполнителем. На рис. 2 показаны графики изменения содержания Са(ОН) 2 в течение трех месяцев гидратации растворов из портландцемента 35 с добавками КП в размере от 10 до 30% (В/Ц и В/Ц + КП = 0,4). В случае добавки КП в количестве 10–20% заметный процесс восстановления гидроокиси кальция начинается через 3 дня, а при добавке 30% – уже через один день и протекает весьма интенсивно вплоть до 28-го дня твердения.

Это означает, что в этот период пуццолановая реакция является наиболее интенсивной. Тем не менее, следует подчеркнуть, что с учетом необходимости защиты арматуры содержание КП в бетонах не должно превышать 10%. Известно, что прочность переходной зоны между цементным раствором и крупным заполнителем меньше прочности самого раствора. Эта зона содержит больше пустых пространств, образующихся вследствие скопления свободной воды около зерен заполнителя, а также сложностей, связанных с более плотной упаковкой частиц у его поверхности. В этом пространстве скапливается больше частиц портландита.

В случае отсутствия добавки КП образуются крупные кристаллы Са(ОН) 2 , ориентированные параллельно поверхности заполнителя или арматуры. Кристаллы портландита обладают меньшей прочностью, чем гидратированные силикаты кальция CSH. Именно поэтому переходная зона и является самым слабым звеном в обычном бетоне. Добавка КП даже в количестве 2-5% приводит к уплотнению структуры переходной зоны за счет заполнения свободных пространств. Поэтому уменьшается как величина кристаллов портландита, так и степень их ориентации относительно зерен заполнителя, что обусловливает упрочнение этой слабой зоны бетона.

В результате происходит восстановление самопроизвольно отдаваемой воды, снижается пористость переходной зоны и повышается сцепление теста с заполнителем и арматурой. Пуццолановые реакции, как фактор химического воздействия, вызывают дальнейшее повышение прочности и долговечности бетона. Считается, что в течение первых 7 дней твердения воздействие КП на свойства бетона имеет в основном физический характер, а позднее – как физический, так и химический. В результате физического и химического воздействия происходит благоприятное изменение микроструктуры теста, связанное со значительным уменьшением пористости в зоне капиллярных пор. Изменение структуры пор в бетоне рассматривается многими исследователями как главный фактор влияния КП на механические свойства и прочность бетона.

Эти изменения находят свое отражение в снижении проницаемости бетона, а также в уменьшении коэффициентов диффузии ионов хлора. В свою очередь, снижение водопроницаемости способствует повышению стойкости бетона к воздействиям агрессивных сред. В случае добавки 15% кремнеземной пыли, на каждое зерно цемента в бетонной смеси приходится свыше 2 млн. частичек пыли, что и объясняет их существенное влияние на свойства бетона. Наконец, КП способствует устранению расширения бетона при реакциях щелочей с реакционно-способным заполнителем. С учетом изложенного прим

Сегодня не секрет, что при изготовлении бетонных смесей производители применяют сухую золу в виде пыли. А для чего? Что именно этот отход в прямом смысле слова дает бетону?

Бетоны, имеющие в своем составе золу, менее расслаиваются при транспортировке на объекты, обладают большей подвижностью и слабой водопроницаемостью.

Наиболее применяемыми являются сухие золы, т.к. они не обладают вяжущими свойствами. Их активность дает о себе знать, взаимодействуя с цементным вяжущим. И от того, каким образом зола взаимодействует с цементом бетона и самой бетонной смесью, удается значительно уменьшить расход цемента в производстве. Для иллюстрации можно привести такие цифры: если при изготовлении бетона класса В10-В30 применять 150 кг золы на каждый 1 м3 смеси, то можно сэкономить 40-80 кг цемента! А если бетон обрабатывают в тепловых условиях, то использование золы экономит 25% цемента!

А в гидротехнических сооружениях еще более потрясающий эффект - введение золы заменяет до 50% цемента!

Если мы заменяем цемент золой до 40% цемента, то при их совместном измельчении прочность бетона через 28 суток близка к обычной прочности бетона (без добавки).

Во время возведения Братской ГЭС (60-е годы) была произведена первая укладка бетона (5000 м3!) с добавкой 15-20% золы. А в Днестровском узле в вяжущее ввели 25% золы, и это не повлияло на прочность сооружения в целом, только увеличив эффективность использования цемента.

А за что «любят» бетоны золу?

За одно из важнейших ее характеристик - гидравлическую активность. Стандартно она определяется по способности золы поглощать известь из известкового раствора. Сегодня используют также т.н. микрокалориметрический метод. Его суть в том, что активность золы определяется по величине теплоты ее смачивания в жидкостях.

С чем связана гидравлическая активность? Прежде всего с химическими реакциями входящих в нее оксидов кремния (SiO2) и алюминия (Al2O3) с гидроксидом кальция, с образованием гидросиликатов и гидроалюминатов кальция. При гидратации формируется т.н. стекловидная фаза золы.

Зола имеет несколько классификация в целях ее рационального использования: в зависимости от конструкций, в которых она используется, в зависимости от вида бетона, для которого она служит добавкой и т.д.

В чем состоит задача при подборе состава бетона с добавкой золы? Необходимо определить такое соотношение компонентов (и золу тоже), при котором нужные свойства бетона можно достичь при минимальном расходе цемента. Это и есть главная задача вообще использования каких-либо добавок: уменьшить расход цемента. А в случае с золой, в смеси она не просто добавка, она еще и микронаполнитель, который улучшает структурообразование бетона. Также вам будет интересна облицовка цоколя гранитом.

В каких случаях более разумно стремиться к уменьшению расхода цемента при введении золы? Тогда, когда марка используемого цемента больше рекомендуемой. Нормы дают предельные значения снижения типовой нормы расхода цемента в различных конструкциях. Количество золы при этом назначается пропорционально значению этой нормы.

Введение правильного количества золы, основанного на расчете по справочным формулам, позволяет существенно снизить водоотделение бетона и сделать его более устойчивым для транспортировок на дальние расстояния.

Во время сгорания топлива образуются отходы, которые называются золами уноса. Рядом с топками устанавливаются специальные устройства, улавливающие эти частицы. Они представляют собой дисперсионный материал, имеющий составляющие размером менее 0,3 мм.

Что такое золы уноса?

Зола уноса - тонкодисперсный материал с небольшими размерами частиц. Образуется она при сжигании твердого топлива в условиях повышенных температур (+800 градусов). В ней находится до 6 % несгоревшего до конца вещества и железо.

Образуется зола уноса при сжигании минеральных примесей, которые находятся в топливе. Для различных веществ содержание ее неодинаковое. К примеру, в дровах содержание золы уноса всего 0,5-2 %, в топливном торфе 2-30 %, а в буром и каменном угле 1 - 45 %.

Получение

Золы уноса образуются во время сгорания топлива. Свойства вещества, полученного в котлах, отличаются от тех, которые создают в лаборатории. Эти отличия затрагивают физико-химические характеристики и состав. В частности, при сжигании в топке происходит расплавление минеральных веществ топлива, что приводит к появлению компонентов недогоревшего композита. Такой процесс, который называется механическим недожогом, связан с увеличением в топке температуры до 800 градусов и выше.

Для улавливания золы уноса необходимы специальные устройства, которые могут быть двух видов: механические и электрические. При работе ГЗУ затрачивается большое количество воды (10-50 м 3 воды на 1 тонну золошлаков). Это является существенным недостатком. Чтобы выйти из такой ситуации, используют оборотную систему: вода после очищения от частичек золы повторно поступает в основной механизм.

Основные характеристики

  • Удобоукладываемость. Чем мельче частицы, тем больше влияние золы уноса. Добавление золы повышает однородность бетонной смеси и ее плотность, улучшает укладку, а также уменьшает расход воды затворения при одинаковой удобоукладываемости.
  • Снижение теплоты гидратации, что особенно важно в жаркое время года. Содержание золы в растворе пропорционально уменьшению теплоты гидратации.
  • Капиллярное поглощение. При добавлении 10 % золы уноса к цементу увеличивается капиллярное поглощение воды на 10-20 %. Это, в свою очередь, уменьшает морозостойкость. Для устранения этого недостатка необходимо незначительно увеличить воздухововлечение за счет специальных добавок.
  • Устойчивость в агрессивной воде. Цементы, которые на 20 % состоят из золы, более стойки к погружению в агрессивную воду.

Плюсы и минусы использования зол уноса

Добавка к смеси в виде золы уноса влечет за собой ряд преимуществ:

  • Снижается расход клинкера.
  • Улучшается помол.
  • Повышается прочность.
  • Улучшается удобоукладываемость, что облегчает распалубку.
  • Снижается усадка.
  • Уменьшается выделение тепла при гидратации.
  • Увеличивается время до появления трещин.
  • Улучшается устойчивость к воде (как чистой, так и агрессивной).
  • Уменьшается масса раствора.
  • Увеличивается огнестойкость.

Наряду с преимуществами, существуют и некоторые недостатки:

  • Добавление золы с большим содержанием недожога изменяет цвет раствора цемента.
  • Уменьшает начальную прочность при низких температурах.
  • Снижает морозостойкость.
  • Увеличивается число компонентов смеси, которые необходимо контролировать.

Виды золы уноса

Существуют несколько классификаций, по которым можно разделить золы уноса.

По виду топлива, которое сжигается, золы могут быть:

  • Антрацитовые.
  • Каменноугольные.
  • Буроугольные.

По своему составу золы бывают:

  • Кислые (с содержанием оксида кальция до 10 %).
  • Основные (содержание выше 10 %).

В зависимости от качества и дальнейшего применения выделяют 4 типа золы - от I до IV. Причем зола последнего вида используется для бетонных конструкций, которые применяются в тяжелых условиях.

Переработка золы уноса

Для целей промышленности чаще всего используется необработанная зола уноса (без помола, просеивания и так далее).

При сгорании топлива образуется зола. Легкие и мелкие частицы за счет движения дымовых газов уносятся из топки и улавливаются специальными фильтрами в золосборники. Эти частицы и являются золой уноса. Оставшаяся часть именуется золой сухого отбора.

Соотношение между указанными фракциями зависит от вида топлива и конструктивных особенностей самой топки:

  • при твердом удалении в шлаке остается 10-20 % золы;
  • при жидком шлакоудалении - 20-40 %;
  • в топках циклонного типа - до 90%.

При переработке в воздух могут попадать частицы шлака, сажи и золы.

Зола уноса сухого отбора всегда сортируется по фракциям под воздействием электрических полей, которые создаются в фильтрах. Поэтому она является наиболее пригодной для применения.

Для снижения потерь вещества во время прокаливания (до 5 %) золу уноса в обязательном порядке гомогенизируют и сортируют по фракциям. Зола, которая образуется после сжигания малореакционных углей, содержит до 25 % горючей смеси. Поэтому ее дополнительно обогащают и используют как энергетическое топливо.

Где используются золы уноса?

Золы широко применяются в различных сферах жизни. Это может быть строительство, сельское хозяйство, промышленность, санитарная обработка

В производстве отдельных видов бетона используется зола уноса. Применение зависит от ее вида. Гранулированную золу применяют в дорожном строительстве для основания парковок, площадок хранения ТБО, велосипедных дорожек, набережных.

Зола уноса сухого улавливания используется для укрепления грунтов как самостоятельное вяжущее и быстро твердеющее вещество. Ее также можно применять для строительства дамб, плотин и других

Для производства золу используют в качестве заменителя цемента (до 25 %). Как заполнитель (мелкий и крупный) золу включают в процесс при производстве шлакобетона и блоков, применяемых при возведении стен.

Широко используется при производстве пенобетона. Добавление золы в пенобетонную смесь увеличивает ее агрегативную устойчивость.

Золы в сельском хозяйстве используются как калийные удобрения. В них содержится калий в виде поташа, который легко растворяется в воде и доступен для растений. Кроме этого, зола богата и другими полезными веществами: фосфором, магнием, серой, кальцием, марганцем, бором, микро- и макроэлементами. Наличие углекислого кальция позволяет использовать золу для снижения кислотности почв. Золу можно вносить под различные культуры в огороде после вспашки, удобрять ею пристволовые круги деревьев и кустарников, а также подсыпать луга и пастбища. Не рекомендуется использование золы одновременно с другими органическими или минеральными удобрениями (особенно фосфорными).

Зола используется для санитарной обработки в условиях отсутствия воды. Она увеличивает уровень рН и убивает микроорганизмы. Ее применяют в уборных, а также в местах осадки сточных вод.

Из всего вышеперечисленного можно сделать вывод о широком применении такого вещества, как зола уноса. Цена на нее варьируется от 500 р. за тонну (при крупном опте) до 850 рублей. Следует отметить, что при использовании самовывоза из дальних регионов стоимость может существенно меняться.

ГОСТы

Разработаны и действуют документы, которые контролируют производство и переработку золы уноса:

  • ГОСТ 25818-91 «Золы уноса для бетонов».
  • ГОСТ 25592-91 «Смеси золошлаковые ТЭС для бетонов».

Для контроля за качеством произведенной золы и смесей с ее применением используют и другие дополнительные стандарты. При этом отбор проб и все виды измерений также проводятся в соответствии с требованиями ГОСТов.

Зола-унос представляет собой тонкодисперсный материал с малым размером частиц, что позволяет использовать ее для ряда производств без дополнительного помола. Характерной особенностью золы является присутствие в ней около 5-6 % несгоревшего топлива, а также железа, в основном в записной форме. Частицы шлака имеют размеры от 0,2 до 20--30 мм. В топках с жидким шлакоудалением шлак получается в гранулированном виде. Для него характерна стекловидная структура.[ ...]

В настоящее время в России ежегодно образуются десятки миллионов тонн золошлаковых отходов. Каждые сутки работы на угле ТЭС накапливается до 1 тыс. т золы и шлака. Подавляющая их часть направляется в отвалы, а в строительной индустрии утилизируется лишь 3-5% ЗШО. Для сравнения: в США и Германии - 40-60%. В США из 20 млн т ежегодно образующихся зол уноса только для изготовления бетона утилизируется 7 млн т.[ ...]

Зола уноса и шлаки образуются при сгорании твердого топлива в присутствии кислорода воздуха при температуре 800°С.[ ...]

Зола-унос может использоваться в производстве строительных материалов без дополнительной обработки (помола, просеивания и т.п.). Нелетучая зола может использоваться в гранулированном виде в дорожном строительстве для изготовления основания участков парковки автомобилей, велосипедных дорожек, дорог, набережных. Ее можно использовать в качестве покрытия на полигонах для размещения твердых бытовых отходов.[ ...]

Зола-унос сухого улавливания может применяться в качестве самостоятельного медленно твердеющего вяжущего, а также в сочетании с портландцементом и известью, в том числе при строительстве автомобильных дорог для укрепления грунтов. Опыт строительства Братской ГЭС на примере утилизации отходов Иркутской ТЭС-1 показал, что эола-унос может быть применена для изготовления бетонных растворов при строительстве плотин, дамб и других гидротехнических сооружений. Ее можно также использовать в качестве покрытия на полигонах для размещения ТБО.[ ...]

Зола-унос добавляется в производстве тяжелых, легких, ячеистых бетонов.[ ...]

Активная зола-уноса сухого отбора может быть использована в качестве минерального порошка в производстве пористого и высокопористого асфальтобетона марок I, II и в горячих и теплых смесях марки III для плотного асфальтобетона, а также в бетонах, применяемых для строительства покрытий и оснований дорог.[ ...]

Использование золы-уноса сухого отбора и ЗШМ отвалов гидроудаления. Очень широк диапазон использования ЗШМ в бетонах: от гидротехнического бетона, в котором сухая зола применяется как заменитель части цемента (до 25 %), до шлакобетона и стеновых блоков из него, в которых в качестве мелкого и крупного заполнителя используются зола и шлак из отвалов и текущего выхода .[ ...]

Характеристики золы (уноса), полученной в топках котлов, несколько отличаются по физико-химическим свойствам и химическому составу от золы, полученной в лабораторных условиях. Такое отличие определяется температурными условиями и временем сжигания частиц топлива в топке, где температура значительно выше 800° С. Основными отличительными факторами является шлакование (расплавление) части минеральной составляющей топлива и наличие в золе частиц недогревшего топлива (механического недожога).[ ...]

Для улавливания золы из потока дымовых газов на современных ТЭС применяют механические и электрические устройства. Значительным недостатком ГЗУ является большой расход вода. Для транспортировки I т золошлаков затрачивается от 10 до 50 м3. В целях сокращения потребления вода на нужды ГЗУ создается оборотная система, когда очистившаяоя от частичек золы и шлака осветленная вода вновь направляется по оборотному трубопроводу на ТЭС в голову системы ГЗУ. В настоящее время в СССГ оборотными системами 1ВУ оборудовано более 57% общего чиола электростанций, сжигающих твердое топливо.[ ...]

Примером использования золы и шлака Иркутской ТЭЦ-1 может служить Ангарский цементно-горный комбинат, забирающий из отвалов ТЭЦ ежегодно около 300 тыс. т отходов. Золошлак там с успехом используется в качестве глинистой составляющей портландце-ментного клинкера, кроме того, комбинат ежегодно перерабатывает до 100 тыс. т сухой золы-уноса. Миллионы рублей «извлек» таким образом Ангарский комбинат, превратив отвалы ТЭЦ-! в своеобразную сырьевую базу. Добавка золы в низкомарочные бетоны и растворы снижает расход цемента на 22-30 % и улучшает качество смесей.[ ...]

Важно отметить, что в ряде случаев зола-унос пригодна для утилизации в промышленности строительных материалов без дополнительной обработки (помола, просеивания и т. п.).[ ...]

При удалении мелкой и легкой фракции золы, которая уносится дымовыми газами из топок и улавливается фильтрами ТЭС в золосборники (такая зола называется золой-уноса), получают золу сухого отбора. Зола сухого отбора поступает с помощью пневмотранспорта либо непосредственно в транспортирующие средства, либо в силосы потребителя. На этих отвалах, имеющихся при каждой ТЭС, хранятся основные массы ЗШМ.[ ...]

Количественное соотношение между шлаками и золой-уносом зависит от конструкции топки и способа сжигания. В агрегатах с твердым шлакоудалением в шлак обычно переходит 10-20% всей золы топлива, с жидким - 20-40, в циклонных топках - до 85-90%.[ ...]

Основными твердыми загрязнителями воздушной среды являются золы уноса, шлаки, сажа.[ ...]

Наиболее качественной для практического применения является зола-уноса сухого отбора, поскольку она всегда отсортирована по фракциям с помощью электрических полей электрофильтров. Такая зола может храниться в силосах в сухом виде и применяться в производстве без дополнительной подготовки. Система подачи золы-уноса в бетоносмесительные узлы аналогична трактам подачи цемента.[ ...]

В процессе сжигания приходится удалять значительные количества золо-шлаковых отходов. С этой целью применяют жидкое или твердое шлакоудаление из нижней части топочных камер и улавливание золы-уноса. При жидком шлакоудалении получают гранулированный материал.[ ...]

Использованию отходов ТЭС должна предшествовать подготовка частиц: у золы-уноса - гомогенизация или фракционирование (сортировка) с целью снизить потери при прокаливании до менее 5%; шлаки, как правило, измельчаются и просеиваются для достижения равномерной зернистости и сохранения постоянного внешнего вида. Поскольку зола-унос ТЭС, сжигающих малореакционные уг и, содержит до 25% горючей массы, разработаны рекомендации по ее обогащению и утилизации с использованием углеродистой фракции в качестве энергетического топлива (Гоголей).[ ...]

Установлено также, что комплексные вяжущие на основе жидкого стекла, гидроксида кальция и золы-уноса обладают повышенными морозостойкостью, водостойкостью и водонепроницаемостью. Высокая прочность выявлена у вяжущих на основе зольной пыли, щелочной или карбонатной добавки натрия или калия в сочетании с лимонной кислотой.[ ...]

А. Т. Логвиненко и М. А. Савинкина проводили опыты с различными образцами полуводного гипса, золой уноса и шлаком. В обрабатываемой воде присутствовало двухвалентное железо (0,3-0,5 мг/л). Их опыты показали, что магнитная обработка воды, как правило, приводит к росту прочности образцов; для гипса наблюдается возрастание прочности во времени. Результаты исследования под электронным микроскопом показали, что в омагниченной воде образуются мелкокристаллические структуры, число мелких кристаллов значительно больше, чем в обычной воде , что обусловливает высокопрочностные характеристики материала .[ ...]

Прекрасно зарекомендовала себя разработанная ВНИИстроем, безотходная технология производства лицевого кирпича на основе зол ТЭС, позволяющая не только сэкономить средства на строительство и эксплуатацию золоотвалов, но и значительно уменьшить загрязнение среды. Поданным Л. С. Бариновойи Ю. С. Волкова (2002), замена в бетоне или растворе 15%-ного цемента на золу уноса или металлургический шлак, что технологически допускается, в перерасчете на мировые объемы их применения, могло бы снизить количество выбросов в атмосферу диоксида углерода (С02) на 300 млн т в год.[ ...]

В ряде случаев в качестве активаторов твердения применены растворы кислот: ортофосфорной (состав вяжущего, %: кислота - 28-40, зола-унос - 30-60, цимот - 12-30); 60%-ной серной в количестве 0,8% от массы золы; 0,4-2,0%-ной концентрированной соляной; 3%-ной соляной с добавлением 0,5-1,0% ССБ. В последнем случае прочность зольных и шлако-зольных бетонов и строительных растворов при нормальном, ускоренном твердении и автоклавной обработке превышает 200 кг/см2.[ ...]

Для тяжелых бетонов она используется взамен части цемента (10-30%) или части песка (150-200 кг/м3), обеспечивая снижение расхода цемента на 30-100 кг/м3. Аналогичны условия утилизации золы-уноса для конструкционных легких бетонов. Для теплоизоляционных легких бетонов зола-унос вводится частично или полностью взамен песка, обеспечивая снижение на 100-150 кг/м3 массы бетона и расхода цемента на 20-40 кг/м3 по сравнению с применением плотного песка. Практически нет экономии цемента и снижения плотности бетона для случаев использования пористого песка.[ ...]

Статистика говорит о том, что 60-90% раковых заболеваний обусловлены экологическими факторами. За 100 лет на Земле в результате разных причин осело более 20 млрд тонн шлаков, 3 млрд тонн зол уноса, миллионы тонн токсичных элементов - кобальта, никеля, мышьяка, цинка и др.[ ...]

В процессе совершенствования производства зольно-щелочных вяжущих предложена технология их получения, не требующая использования дефицитных щелочей (едкий натр, едкое кали) или совместного помола золы-уноса с добавками.[ ...]

Более эффективными аппаратами для улавливания пыли являются различные электрические фильтры, устанавливаемые, например, в котельных тепловых электростанций для очистки дымовых газов от сажи, летучей золы-уноса. К коронирующим и осадительным электродам фильтров (рис. 3.5) подводят постоянный ток высокого напряжения.[ ...]

Оборудование системы "Энвайро - Флок" состоит из высокопроизводительной модернизированной центрифуги фирмы "Alfa-Laval" и оборудования для смешения обезвреженного бурового раствора с обезвреживающим составом на основе цемента с добавками золы уноса ТЭЦ. Сточная вода закачивается в специальную емкость, в которую добавляется регулятор pH, органический или неорганический коагулянт и органический флокулянт (полиакриламид). Обработанная вода из смесительной емкости насосом подается в центрифугу для отделения жидкой фазы. Очищенная вода, т.е. вода, прошедшая центрифугу, пропускается через угольный фильтр и далее сбрасывается на рельеф местности. Система "Энвайро-Флок" смонтирована на специальном трайлере и включает емкость для хранения реагентов, емкости для смешивания и проведения процесса обработки сточной воды коагулянтом и флокулянтом, а также приборы контроля и управления процессом очистки.[ ...]

Температура в топливных камерах современных ТЭЦ достигает 1600 °С, топливо подается в камеру в пылевидном состоянии. Образующиеся из минеральной части топлива частицы пыли имеют различный фракционный состав. При размере до 100 мкм пылевидные частицы уносятся дымовыми газами (зола-унос). Более крупные частицы оседают на пол камеры и оплавляются, образуя стекловидную массу, которую затем подвергают грануляции.[ ...]

Полый центральный вал охлаждается воздухом, нагнетаемым снизу и выходящим из его верхней части. Некоторая часть этого предварительно нагретого воздуха по трубопроводам подается на нижний ярус и подвергается дальнейшему нагреву под воздействием температуры горячей золы и температуры самой печи, по мере того как он перемещается вверх. Затем воздух охлаждается, отдавая свое тепло, которое расходуется на высушивание поступающего на верхний под осадка. Проти-воточное движение воздуха и осадка приводит к оптимальным условиям сгорания. После двукратного прохода через печь воздух отводится в мокрый скруббер для удаления золы-уноса и выбрасывается в атмосферу. При необходимости печь может выполнять функции только сушильного устройства. Горячие газы из выносной топки направляют вместе с осадком сверху вниз; на подах происходит высушивание осадка без его подгорания.[ ...]

Золошлаковые материалы первой группы (активные) способны к самостоятельному твердению, поэтому их можно использовать взамен цемента для устройства оснований из укрепленных грунтов и местных малопрочных каменных материалов. Способностью к самостоятельному твердению обладает только зола-уноса сухого отбора. Ее называют самостоятельным медленно твердеющим вяжущим, от портландцемента она отличается меньшим содержанием клинкерных минералов, отсутствием алита, содержанием минералов низкой активности, извести, ангидрита и полуводного гипса, округлых сплавившихся частиц, оксидов щелочноземельных металлов, наличием стеклообразной фазы и органических веществ, что определяет замедленную гидратацию и замедленное по сравнению с укрепленными портландцементом твердение укрепляемых ею материалов.[ ...]

В настоящее время на большинстве ТЭЦ топливо сжигают в пылевидном состоянии, причем температура в топочной камере достигает 1200-1600°С. При этом конгломераты различных соединений, образующихся из его минеральной части, выделяются в виде пылевидной массы. Мелкие и легкие частицы (размеры от 5 до 100 мкм), содержащиеся в золе в количестве до 80-85 %, уносятся из топок конгломератов дымовыми газами, образуя так называемую золу-унос. Более крупные частицы оседают на под топки, оплавляются в кусковые шлаки или стекловидную массу, которую затем подвергают грануляции. Количественное соотношение между образующимися шлаками и золой-уносом различно, оно зависит от конструкции топки на ТЭЦ и ГРЭС. Так, в топках с твердым шлакоудалением в шлак обычно переходит 10-20 % всей золы топлива. В топках с жидким шлакоудалением в шлак переходит 20-40 %, а в циклонных топках - до 85- 90 % всей золы топлива. Топливные шлаки и зола-унос различаются по составу и свойствам в зависимости от вида топлива и способа его сжигания.[ ...]

В Иркутске по этой технологии освоено производство наружных стеновых панелей из неавтоклавного газоэолобетона для двухэтажных жилых домов и зданий соцкультбыта. Изделия изготовляют на агрегатно-поточной и конвейерной линиях комбината строительных конструкций. С целью снижения их усадки и повышения трещиностойкости используются ячеистые смеси повышенной вязкости следующего состава, на 1 м3: цемент М400 - 330 кг, зола-унос - 450 кг, алюминиевая пудра - 0,9 кг и В/Т=0,4. Необходимая степень поризации смесей обеспечивается за счет применения при формовании специальных прерывистых режимов вибрирования. Бетон стеновых панелей имеет среднюю плотность 800г900 кг/м3 и класс по прочности при сжатии Б2,5-В3,5, морозостойкость его составляет около 50 циклов, коэффициент теплопроводности 0,19-0,21 Вт/м°С. По результатам натурных наблюдений, стеновые панели после 6 лет эксплуатации имели трещины шириной 0,1-0,2 мм.[ ...]

Разработка составов и способов повышения противоэрозионной устойчивости почвенно-грунтовых систем криолитозоны . Физико-химические методы упрочнения грунтов широко применяются в строительстве, особенно в автодорожном, а также для борьбы с эрозией почв и грунтов. В качестве вяжущих используются различные химические вещества минерального и органического происхождения или их смеси. В составе минеральных вяжущих находят применение цементы, известь, гипс, золы уноса, золошлаковые смеси, а также водные растворы хлористых солей кальция, натрия, алюминия и др. К важнейшим компонентам органических структурообразователей грунтов относятся смолы, битумы, сырые нефти. С теоретических и практических позиций авторами данной работы обосновано использование тяжелых нефтяных остатков нефтепереработки в качестве органических структурообразователей грунтов.[ ...]

Расчет степени улавливания обычно ведется для каждой фракции частиц отдельно. Содержание той или иной фракции Ф, можно найти из кривой остатков на сите вычитанием остатков на сите на концах заданного изменения диаметров частиц (рис. 2.1, в). При расчете золоуловителей диаметр принимают постоянным, равным среднеарифметическому диаметру на его концах. Так, в диапазоне изменения диаметров от 10 до 20 мкм в расчетах принимают в качестве среднего значения 15 мкм. В табл. 2.1 приведен фракционный состав золы уноса некоторых топлив СССР.[ ...]

Наряду с перечисленными выше методами уменьшения размеров кусковых материалов и их разделения на классы крупности в практике рекуперадионной технологии твердых отходов большое распространение имеют методы, связанные с решением задач укрупнения мелкодисперсных частиц. ВМР, имеющие как самостоятельное, так и вспомогательное значение и объединяющие различные приемы гранулирования, таблетирования, брикетирования и высокотемпературной агломерации. Их используют при переработке в строительные материалы рада компонентов отвальных пород добычи многих полезных ископаемых, хвостов обогащения углей и золы - уноса ТЭС, в процессах утилизации фосфогипса в сельском хозяйстве и цементной промышленности, при подготовке к переплаву мелкокусковых и дисперсных отходов черных и цветных металлов, в процессах утилизации пластмасс, саж, пылей и древесной мелочи, при обработке шлаковых расплавов в металлургических производствах и электротермофосфорном производстве и во многих других процессах утилизации и переработки ВМР.

МОСКВА СТРОЙИЗДАТ 1977

Печатается по решению секции по технологии бетона научно-технического совета НИИЖБ.

Содержатся основные положения по применению золы, шлака и золошлаковой смеси тепловых электростанций в тяжелых бетонах и растворах. Приведены технические требования к золошлаковым материалам, методы их испытаний, а также правила приемки, транспортирования, хранения и применения. Даны схемы установки для отбора сухой золы из золосборников ТЭС и для приготовления шлама из отвальной золошлаковой смеси, таблицы составов бетонов с добавкой золы, бетонов на золошлаковом заполнителе, а также составов растворов для кирпичной и крупноблочной кладки.

Табл. 11, рис. 3.

ПРЕДИСЛОВИЕ

В 1971 г. в нашей стране были определены задания по применению золошлакового сырья в строительстве и производстве строительных материалов.

Количество золы и шлака, накопленное в отвалах тепловых электростанций, достигает сотни миллионов тонн и с каждым годом увеличивается. Использование же этих отходов развивается очень медленно и не превышает 2 - 3 % общего выхода. Это объясняется следующим:

большим разнообразием физико-механических свойств зол и шлаков, получаемых от различных видов топлива в условиях изменяющихся режимов его сжигания;

отсутствием требуемого количества специальных установок и устройств для организованного отбора, усреднения состава золы и шлака и выдачи их потребителям в виде товарной продукции;

недостаточно широкой постановкой исследований свойств золы и шлака конкретных электростанций, отсутствием четкой классификации зол и шлаков и общесоюзных нормативных документов, регламентирующих их применение;

недостаточным количеством бетоносмесительных установок и заводов, переоборудованных для выпуска бетонов и растворов с золошлаковыми заполнителями.

Однако необходимо отметить, что научно-исследовательскими институтами проведена значительная работа по изучению состава и свойств различных зол и шлаков как добавок и заполнителей бетонов.

Применение золы в бетонах и растворах, а также золошлаковой смеси и шлака в бетонах позволяет частично или полностью заменить цемент, известь, мелкодробленый щебень, доменный гранулированный шлак, природный песок. При этом сокращаются расходы на транспортирование отходов в отвалы, на содержание отвалов и уменьшается потребность в расширении площадей, занимаемых отвалами, а также карьеров для добывания камня и песка.

Экономия от применения золы-уноса как добавки в зависимости от марки бетонов и растворов составляет 0,6 - 1,2 руб. на 1 м 3 . При использовании бетонов на комбинированных заполнителях и на заполнителях из золошлаковой смеси, когда обычные заполнители частично или полностью заменяются золошлаковой смесью или шлаком, экономия составляет 2 - 4 руб. на 1 м 3 бетона.

В Донбассе и Приднепровье, Кузбассе и на Урале применено в строительстве несколько сотен тысяч кубических метров сборных бетонных и железобетонных изделий, изготовленных из бетона на золошлаковых заполнителях. В настоящее время можно считать практически достижимым и экономически выгодным массовое внедрение золошлакового сырья в строительстве. Для этого, прежде всего, необходимо:

снабжать электростанции определенными видами топлива, что улучшит режимы его сжигания и качество зол и шлаков;

на каждой крупной электростанции создать установки и предприятия по отбору, необходимой переработке и поставке зол, шлаков и золошлаковых смесей потребителям в виде товарной продукции установленного качества.

Настоящие рекомендации имеют цель широко информировать строителей о возможности экономии цемента, снижения стоимости и улучшения качества бетона и раствора при использовании золы и шлаков тепловых электростанций.

Рекомендации разработаны НИИ бетона и железобетона Госстроя СССР (канд. техн. наук В .М . Медведев ) и Донецким Промстройниипроектом Госстроя СССР (кандидаты техн. наук И .В . Вольф , Ю .П . Чернышев , инж. В .И . Романов ),

При составлении рекомендаций использованы результаты исследований, выполненных во ВНИИГ Минэнерго СССР, Новокузнецком отделении Уралниистромпроекта, ВНИИЖелезобетона Минпромстройматериалов СССР и в других институтах, а также положительный опыт производственных организаций, внедряющих золу и шлак.

Дирекция НИИЖБ

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Рекомендации распространяются на применение в тяжелых бетонах и строительных растворах зол, шлаков и золошлаковых смесей, образующихся от сжигания каменных и антрацитовых углей тепловых электростанций.

1.2. Бетонные и железобетонные конструкции, изготовленные из бетона с добавкой золы или из бетона на золошлаковом заполнителе, допускается применять в зданиях и сооружениях с нормальной, слабоагрессивной и среднеагрессивной средой при условии соблюдения требований, предусмотренных главой СНиП по защите строительных конструкций от коррозии по отношению к тяжелому бетону. Расход портландцемента в бетонах с добавкой золы и шлака должен быть не менее регламентируемого настоящими рекомендациями.

1.3. До проведения специальных исследований и испытаний не допускается применять бетон на заполнителе из золошлаковой смеси для предварительно-напряженных конструкций и конструкций пролетом более 6 м.

2. ВИДЫ ТОПЛИВНЫХ ОТХОДОВ

2.1. Зола представляет собой тонкодисперсный порошок, образующийся из минеральной части твердого топлива, сжигаемого в топках котлов в пылевидном состоянии, и осаждаемый золоулавливающими устройствами из дымовых газов.

2.2. Шлак представляет собой зернистый материал с крупностью зерен 20 - 0,3 мм, который образуется из расплава минеральной части топлива. После охлаждения расплава в водяной ванне кусковой шлак подвергается дроблению и направляется в систему гидроудаления. Шлак получается при раздельном удалении золы и шлака или при переработке золошлаковой смеси из отвалов.

2.3. Золошлаковая смесь тонкодисперсной золы и зернистого шлака образуется при их совместном гидроудалении или составляется из золы и шлака, получаемых раздельно. Для использования золу и шлак берут из отвалов или непосредственно из трубопроводов гидроудаления.

2.4. Зола является гидравлической добавкой, связывающей свободный гидрат окиси кальция, который выделяется в процессе гидратации цемента, практически не увеличивающей водопотребность смешанного вяжущего, растворов и бетонов.

Зола при нормальной температуре замедляет твердение портландцемента и дает значительно лучшие результаты при пропаривании и обработке изделий в автоклавах.

2.5. Химический состав золы при сжигании углей разных месторождений приведен в табл. .

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Пределы изменения химического состава золы, %, образующейся при сжигании углей

Донбасса

Кузбасса

Караганды

Подмосковья

Таблица 2

Технические требования к золе ТЭС
(по ТУ 34 4014-73 Минэнерго СССР)

Единица измерения

Класс сухой золы

% (по массе)

Не нормируется

Не нормируется

Влажность, не более

Удельная поверхность, не менее

Таблица 3

Технические требования к золе, шлаку и золошлаковой смеси, образующимся от сжигания антрацитовых и каменных углей Донбасса (по данным Донецкого Промстройниипроекта)

Технические требования к видам материалов

золошлаковая смесь

Объемная насыпная масса (в сухом состоянии), кг/м 3 , не менее

Не нормируется

Не более 10

Модуль крупности, не менее

антрацитовых

Не нормируется

каменных

Остаток на сите № 008, %, не более

Удельная поверхность, см 2 /г, не менее

При несоответствии золошлаковых материалов требованиям п. их пригодность рекомендуется определять лабораторными испытаниями бетонов и растворов, изготовленных с добавкой золы и шлака.

4. ПРАВИЛА ПРИЕМКИ

4.1. Поставка и приемка золы ТЭС производятся партиями по 100 т. Поставка золы менее 100 т считается целой партией.

4.2. Определение количества поставляемой золы производится по массе в состоянии естественной влажности.

4.3. Поставщик обязан сопроводить каждую партию поставляемой золы паспортом, удостоверяющим ее качество, в котором указываются: наименование поставщика; номер и дата паспорта; номер партии, количество и класс золы; номера вагонов (при железнодорожной поставке) и номера накладных; соответствие качества поставляемой золы в партии техническим требованиям табл. или настоящих рекомендаций с указанием фактических данных.

4.7. При поставке золы в мешках отбирают пробу не менее 1 кг из одного произвольно выбранного мешка от каждых 100 мешков. Все пробы, отобранные от одной партии, смешивают и отбирают среднюю пробу, как указано в п. .

4.8. При поставке золы водным транспортом потребитель по своему усмотрению отбирает из разных мест судна пробы массой по 2 кг из расчета получения 20 кг от каждых 100 т поставляемой золы. Пробы смешивают и отбирают среднюю пробу, как указано в п. .

4.9 Испытания отобранных средних проб золы производят в соответствии с требованиями раздела настоящих рекомендаций.

4.10. Партия золы или вся поставка может быть забракована потребителем, если ее качество по результатам испытания пробы не отвечает техническим требованиям (см. табл. , ).

4.11. При поставке шлака и золошлаковой смеси по усмотрению потребителя проба отбирается от партии объемом, указанным в п. , в количестве 10 - 20 кг, затем перемешивается, и среднюю пробу отбирают, как указано в .

5. МЕТОДЫ ИСПЫТАНИЯ

5.1. Химический анализ золы, шлака и золошлаковой смеси проводят по ГОСТ 5382-73 или ГОСТ 10538 .1-72, ГОСТ 10538.4-72, ГОСТ 10538.5-72 и ГОСТ 11022 -64.

5.2. Потерю массы при прокаливании (п.п.п.) определяют по ГОСТ 5382-73 , но прокаливание производят при температуре 700 - 800 °С.

5.3. Влажность материалов определяют по ГОСТ 9758 -68 или ГОСТ 11014 -70.

5.4. Величину удельной поверхности золы определяют по ГОСТ 310-60 на приборе ПСХ-2 (или ПСХ-4) по инструкции, прилагаемой к прибору, или определяют ее крупность просеиванием на сите № 008.

5.5. Объемную насыпную массу материалов определяют по ГОСТ 9758 -68.

5.6. Равномерность изменения объема цементно-зольного раствора проверяют по ГОСТ 9758 -68 и ГОСТ 310-60.

5.7. Зерновой состав и модуль крупности шлака и золошлаковой смеси определяют по ГОСТ 8735 -65.

5.8. Дробимость в цилиндре определяют по ГОСТ 9758 -68.

6. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Зола может доставляться потребителям в мешках или навалом при условии применения закрытых транспортных средств (железнодорожных вагонов типа «цементовоз», судов, контейнеров, автозоловозов).

6.2. Транспортирование золы производят железнодорожным или автотранспортом поставщика, авто- и водным транспортом потребителя.

6.4. Шлак и золошлаковую смесь из отвалов можно транспортировать навалом в открытых полувагонах, автосамосвалах и прицепах.

6.5. Шлак и золошлаковую смесь рекомендуется хранить под навесом или на открытых площадках. Для устранения загрязнения шлака и золошлаковой смеси грунтом складские площадки должны иметь бетонное покрытие и бортовое ограждение.

7. ГАРАНТИИ ПОСТАВЩИКА

7.1. Зола ТЭС должна быть принята техническим контролем поставщика (ТЭС).

7.2. Поставщик гарантирует соответствие золы, шлака и золошлаковой смеси техническим требованиям (см. табл. , ) при соблюдении потребителем условий транспортирования и хранения.

7.3. Шлак и золошлаковая смесь могут отпускаться поставщиком по техническим условиям, установленным в договорах с потребителем и составленным с учетом требований табл. и настоящих рекомендаций.

8. ОБЛАСТИ ПРИМЕНЕНИЯ ЗОЛЫ, ШЛАКА И ЗОЛОШЛАКОВОЙ СМЕСИ

8.1. Золу I класса (см. табл. ) допускается применять во всех видах тяжелого армированного и неармированного бетона и раствора.

Золу II и III классов допускается применять только в неармированных тяжелых бетонах и во всех видах растворов.

9.3. При раздельном гидрозолоудалении отбор мокрой золы может осуществляться с помощью специальной установки, включающей сгустители Дорра и вакуум-фильтры.

9.4. При необходимости применения золошлаковой смеси из отвалов рекомендуется использовать технический комплекс по приготовлению и применению гидроудаленной золы в виде шлама усредненного состава и определенной влажности производительностью 30 тыс. м 3 готовых изделий в год (см. прил. ).

9.5. Для более эффективного использования золошлаковых смесей в бетонах целесообразно производить их обогащение с целью уменьшения зольной составляющей и достижения оптимального зернового состава.

9.6. Золошлаковую смесь, пригодную по зерновому составу для применения в качестве од нокомпонентного заполнителя бетона, можно отбирать непосредственно из отвала вблизи выпуска золошлаковой пульпы из трубопровода.

9.7. Золошлакову ю смесь, используемую вблизи электростанций, можно транспортировать к месту применения по специальным трубопроводам, соединенным с магистральным трубопроводом гидрозолоудаления.

10. ПРИМЕНЕНИЕ ЗОЛЫ, ШЛАКА И ЗОЛОШЛАКОВОЙ СМЕСИ В ТЯЖЕЛЫХ БЕТОНАХ

10.1. Применение золы, шлака и золошлаковой смеси в качестве активных минеральных добавок, микронаполнителей и заполнителей позволяет получить следующие эффективные виды бетона:

тяжелый бетон, в состав которого вводится зола вместо части цемента и части заполнителя;

мелкозернистый бетон на однокомпонентном заполнителе из золошлаковой смеси;

мелкозернистый бетон на шлакопесчаном заполнителе, включающем шлак раздельного гидроудаления и природный песок;

бетоны на комбинированных заполнителях, в которых золошлаковая смесь или шлак применяются в сочетании с обычными заполнителями.

Тяжелый бетон с добавкой золы

10.2. В состав тяжелого бетона зола вводится в оптимальном количестве, равном 150 кг/м 3 пропариваемого бетона и 100 кг/м 3 бетона, твердеющего без тепловой обработки. При этом достигается экономия цемента, равная 50 - 70 кг/м 3 пропариваемого бетона и 30 - 40 кг/м 3 бетона, твердеющего без тепловой обработки. Зола в бетоне выполняет роль активной минеральной добавки и микронаполнителя, улучшающего структурообразующие свойства смеси. При введении золы в указанном оптимальном количестве водопотребность бетонной смеси практически не изменяется. Поэтому для корректировки состава смеси, подобранного общепринятыми способами, следует сократить расход цемента в рекомендуемом количестве и уменьшить расход песка и щебня (гравия) в принятой пропорции на величину, равную разности между массой введенной золы и сокращаемого цемента.

Примерные составы бетона, установленные в результате исследований, выполненных в Донецком Промстройниипроекте и в Новокузнецком отделении Уралниистромпроекта, приведены в приложении .

10.3. Золу можно вводить в смеситель одним из способов, перечисленных в п. . Бетонная смесь с осадкой конуса более 2 см может приготовляться в смесителях гравитационного действия, менее подвижные и жесткие смеси следует приготовить в смесителях принудительного перемешивания. Продолжительность перемешивания в смесителях гравитационного действия 60 - 120 с, в смесителях принудительного действия 120 - 180 с в зависимости от подвижности или жесткости смеси.

10.4. Пропаривание конструкций и изделий из бетона на портландцементе и шлакопортландцементе с добавкой золы рекомендуется производить при температуре 90 - 95 °С. Продолжительность изотермического прогрева должна быть равна 8 - 10 ч.

10.5. Тяжелый бетон с добавкой золы рекомендуется применять в случаях, когда требования к нему ограничиваются прочностью на сжатие. Добавка золы в бетон при производстве работы в осенне-зимний период методом «термоса» не рекомендуется, так как она замедляет твердение бетона при низких температурах. В случаях, когда к бетону предъявляются особые требования (истираемость, коррозионная стойкость и др.), вопрос о добавке золы должен решаться на основе специальных опытов.

При строительстве в районах с жарким и сухим климатом уход за бетоном, имеющим в своем составе золу (увлажнение и укрытие поверхностей конструкций от высушивания ветром и солнечной радиацией), должен быть более длительным, чем в районах с умеренным климатом.

Мелкозернистый бетон на однокомпонентном заполнителе из золошлаковой смеси

10.6. В мелкозернистом бетоне на однокомпонентном заполнителе из золошлаковой смеси обычные заполнители - щебень и песок - полностью заменяются золошлаковой смесью, содержащей мелкодисперсные золы, мелкие и крупные фракции шлака. При замене песка и щебня низкого качества (загрязненный и запесоченный щебень из песчаника и известняка, мелкозернистый песок) расход цемента в бетоне на однокомпонентном заполнителе из золошлаковой смеси не повышается. При замене в бетоне такой же прочности высококачественного гранитного щебня и песка золошлаковой смесью расход цемента повышается на 10 - 20 %.

10.7. Золошлаковая смесь, применяемая как однокомпонентный заполнитель, может содержать золу (фракции менее 0,315 мм) в пределах от 20 до 50 %. Корректировать состав золошлаковой смеси необходимо, когда содержание золы в ней выходит за указанные пределы.

При получении золошлаковой смеси смешиванием шлака и золы содержание последней в смеси рекомендуется принимать равным 20 % по массе.

10.8. Состав бетона на заполнителе из золошлаковой смеси можно определять по графикам, построенным на основе экспериментальных данных для применяемых видов и марок цемента, требуемой подвижности бетонной смеси и фактических условий твердения бетона (см. прил. ).

10.9. Приготовление бетонной смеси на заполнителе из золошлаковой смеси рекомендуется производить в смесителях принудительного перемешивания типа С-773, С-357 или лопастных растворобетоносмесителях типа СМ-289, С-209 и С-290. Продолжительность перемешивания должна быть в пределах 3 - 5 мин в зависимости от емкости смесителя и жесткости смеси.

При использовании бегунов типа ЗМ-3, Ц-79 и др., применяемых для получения активизированного бетона из доменного гранулированного шлака, обработку золошлаковой смеси следует вести в слабоувлажненном состоянии 8 - 10 мин. В результате прочность бетона повышается на 20 - 30 % по сравнению с прочностью бетона, получаемого из смеси, приготовленной в обычных смесителях.

10.10. Прочность бетона на золошлаковой смеси, твердеющего в нормальных условиях в течение 1 и 2 лет, достигает соответственно 120 - 130 и 140 - 160 % по отношению к месячной прочности. Для ускорения твердения изделий из этого бетона рекомендуется пропаривание при температуре 90 - 95 °С с продолжительностью изотермического прогрева 8 - 10 ч. При этом к месячному сроку нормального твердения бетон достигает проектной прочности. Бетон на заполнителе из золошлаковой смеси можно подвергать автоклавной обработке, которая обеспечивает получение требуемой прочности сразу после термообработки при расходе цемента, меньшем на 20 - 30 %, чем в бетоне на обычных заполнителях.

10.11. Мелкозернистый бетон на заполнителе из золошлаковой смеси получается прочностью от 5 до 50 МПа * и морозостойкостью от 15 до 150 циклов. Коэффициент теплопроводности такого бетона равен 0,87 - 0,93 Вт/(м ∙ К) ** .

* 1 кгс/см 2 = 0,1 МПа.

** 1 ккал/(ч ∙ м ∙ °С) = 1,16 Вт/(м ∙ К).

Переходные коэффициенты при испытании этого бетона в образцах разного размера принимаются как для тяжелого бетона (ГОСТ 10180 -74). Значения нормативных и расчетных сопротивлений бетона можно принимать в зависимости от его марки по главе СНиП по нормам проектирования бетонных и железобетонных конструкций, а начальный модуль упругости - как для тяжелого бетона с коэффициентом 0,85.

Соответствие бетона дополнительным техническим требованиям (тепловыделение, теплопроводность, водопроницаемость, морозостойкость, коррозионная стойкость в агрессивных средах и др.) подтверждается лабораторными испытаниями на конкретных материалах.

10.12. Бетон на заполнителе из золошлаковой смеси рекомендуется применять:

в шахтном строительстве для изготовления сборных бетонных и железобетонных элементов крепи (затяжек, центрифугированных стоек, тумб, бетонитов) и рудничных шпал;

в сельскохозяйственном и малоэтажном строительстве для изготовления мелких и крупных фундаментных и стеновых блоков, плит перекрытий и покрытий, перемычек, колонн и балок длиной до 6 м.

10.13. Для обеспечения сохранности стальной арматуры в железобетонных конструкциях, изготовленных из бетона на золошлаковой заполнителе, необходимо применят в качестве вяжущего портландцемент, отвечающий требованиям ГОСТ 10178-62* . Расход цемента на 1 м 3 бетона принимается не менее минимально допустимой нормы, определяемой по формуле

С = (0,4 + 0,04 А ) Р ,

где С - расход портландцемента, кг/м 3 бетона (минимально допустимая норма);

А - содержание несгоревших частиц угля в зольных фракциях золошлакового заполнителя, %;

Р - количество зольных фракций в составе золошлакового заполнителя, кг/м 3 бетона.

Формула применима при А = 5 - 15 %. Если А < 5 %, минимально допустимая норма расхода цемента определяется по формуле

С = 0,6 Р .

Мелкозернистый бетон на шлакопесчаном заполнителе

10.14. Мелкозернистый бетон на шлакопесчаном заполнителе приготовляется из шлака раздельного гидроудаления и природного кварцевого песка. По предварительным данным, такой бетон более экономичен, чем мелкозернистый бетон на двухфракционном кварцевом песке (на 20 - 25 % по расходу цемента).

При необходимости изготовления густоармированных и тонкостенных конструкций такой бетон будет эффективен.

Бетон на комбинированных заполнителях, включающих золошлаковую смесь или шлак

10.15. При изготовлении тяжелого бетона золошлаковая смесь может заменить песок частично или полностью. Особенно выгодно вводить золошлаковую смесь вместо мелкозернистого песка, требующего повышенного расхода цемента. Бетон, в котором золошлаковая смесь, заменяющая песок, сочетается со щебнем, по прочности не уступает бетону на высококачественных заполнителях.

При применении золошлаковой смеси или шлака в бетонах в сочетании с обычными заполнителями улучшается зерновой состав и удобоукладываемость бетонной смеси, достигается экономия дорогостоящих заполнителей и в отдельных случаях цемента.

10.16. Применение комбинированных заполнителей требует выделения места на складе, наличия бункеров и дозаторов на бетоно-смесительных установках и заводах.

10.17. Составы бетонов на комбинированных заполнителях устанавливают строительные лаборатории с учетом вида и качества местных материалов, условий производства и требований к бетону.

Бетоны на комбинированных заполнителях можно применять в обычных железобетонных конструкциях наравне с тяжелыми бетонами с учетом ранее оговоренных ограничений. В напряженно-армированных, специальных и особо ответственных конструкциях такие бетоны применять нельзя. Возможность применения для этих конструкций бетонов с комбинированными заполнителями необходимо устанавливать на основе специальных исследований в каждом конкретном случае.

11. ПРИМЕНЕНИЕ ЗОЛЫ В СТРОИТЕЛЬНЫХ РАСТВОРАХ

11.1. Золу рекомендуется применять в цементных, цементно-известковых и известковых растворах. Зола применяется в растворах как активная минеральная добавка, пластификатор и микронаполнитель, улучшающий структуру и качество растворов (пластичность, водоудерживающую способность и прочность).

С применением золы могут быть получены растворы следующих марок (по прочности на сжатие): 4, 10, 25, 50, 75, 100 и 150.

11.2. Строительные растворы с добавкой золы рекомендуется применять для каменной кладки и возведения стен из крупноразмерных элементов. Растворы с добавкой золы не рекомендуется применять в зимний период при кладке методом замораживания в связи с замедленным твердением их при пониженной температуре.

Применение растворов с добавкой золы и шлака для армированной кладки возможно после проверки в лаборатории строительной организации сохранности арматуры в таком растворе.

Цементные растворы с добавкой золы

11.3. Оптимальн ое содержание золы в цементных растворах на портландцементе и шлакопортландцементе рекомендуется в пределах 100 - 200 кг/м 3 . В тощих растворах оптимальное содержание золы составляет 80 - 125 % массы цемента. С увеличением расхода цемента содержание золы уменьшается до 40 - 50 % массы цемента. При высоком расходе цемента - более 400 кг/м 3 введение золы в состав раствора малоэффективно.

Применение мелкодисперсной золы улучшает удобоукладываемость растворной смеси и снижает расход цемента на 30 - 50 кг.

Цементно-известковые растворы с добавкой золы

11.4. Оптимальное содержание золы в цементно-известковых растворах составляет 100 - 200 кг/м 3 . Золу рекомендуется вводить взамен части цемента, извести и песка. При этом достигается экономия до 30 - 50 кг цемента и 40 - 70 кг известкового теста на 1 м 3 раствора без ухудшения удобоукладываемости и прочности. Добавка золы практически не изменяет водопотребности цементно-известковых растворных смесей и эффективна при применении портландцемента и шлакопортландцемента.

Крупнодисперсную золу используют как добавку вместо части извести и песка без уменьшения расхода цемента.

Известковые растворы с добавкой золы

11.5. В известковых растворах при замене извести золой расход известкового теста уменьшается на 50 % без снижения прочности и других свойств этих растворов. При замене 50 % извести удвоенным по массе количеством золы вместо извести и части песка достигается экономия извести и повышается марка раствора. Таким путем можно получить известково-зольный раствор марки 25 без применения цемента. Бесцементные известково-зольные растворы марок 10 и 25 экономичны и могут найти применение в массовом малоэтажном и сельском строительстве.

11.6. Подбор составов растворов с добавкой золы производится в следующей последовательности. Вначале определяется состав раствора без добавки золы с расходом составляющих в килограммах на 1 м 3 раствора. Затем уточняется расход составляющих с учетом введения в раствор золы. В результате добавки золы объемная масса раствора увеличивается лишь на 20 - 40 кг, а водопотребность растворных смесей практически не изменяется. Зола вводится в цементные растворы взамен части цемента и части песка; в цементно-известковые - взамен части цемента, извести и песка. После подбора составы строительных растворов уточняются на пробных замесах.

Примерные составы обычных растворов с добавкой золы и без нее приведены в прил. .

11.7. Строительные растворы с добавкой золы приготовляют централизованно на бетонорастворных заводах или растворосмесительных узлах, оснащенных серийными растворосмесителями вместимостью 150, 375, 750 и 1500 л. Составляющие растворных смесей дозируют по массе. Продолжительность перемешивания растворов с добавкой золы устанавливается из условия получения однородной смеси и составляет 3 - 5 мин.

11.8. Контроль качества растворов с добавкой золы должен включать регулярную проверку качества исходных материалов, точности дозирования и времени перемешивания, физико-механических свойств растворной смеси и затвердевшего раствора.

Подвижность, расслаиваемость, водоудерживающую способность и объемную массу растворных смесей, а также прочность при сжатии и изгибе, плотность, водопоглощение и морозостойкость затвердевших растворов определяют по ГОСТ 5802 -66.

Постоянно контролируют подвижность, объемную массу растворных смесей и прочность при сжатии затвердевших растворов. Другие свойства растворных смесей контролируются, когда к растворам предъявляются специальные требования, диктуемые особыми условиями производства работ или эксплуатации конструкции.

ПРИЛОЖЕНИЕ 1

Пропускная способность установки, по расчету, 101 - 500 т золы в год. Вместимость склада, состоящего из шести силосов по 140 т сухой золы, составляет 840 т. Сметная стоимость строительства установки 760 тыс. руб., в том числе строительно-монтажных работ 600 тыс. руб.

Рис. 1. Схема установки сухого отбора золы

1 - вакуум-насос РМК-4, 2 - пневмовинтовой насос НПВ-36-4; 3 - мотор; 4 - бункер-накопитель; 5 - золопровод вакуумный, 6 - осадительная камера с фильтром; 7 - дымовая труба; 8 - дымосос; 9 - электропневматические задвижки; 10 - электрофильтры; 11 - золосборники; 12 - котел ГЭС; 13 - шламопровод на отвал золы и шлака; 14 - склад золы силосный; 15 - отгрузка золы на железнодорожный и автотранспорт; 16 - трубопровод сжатого воздуха; 17 - золопровод напорный; 18 - компрессорная

Схема установки представлена на рис. . От золосборников под электрофильтром, из которых зола выдается в систему гидроудаления, с помощью электропневматических задвижек зола попадает в вакуумный золопровод, осадительную камеру с фильтром и в бункер-накопитель. Вакуум в системе отсоса создается вакуум-насосом, из бункера-накопителя зола захватывается пневмовинтовым насосом, питающимся от компрессорной, и по напорному золопроводу закачивается в силосный склад. С помощью сжатого воздуха, подаваемого по трубопроводу, производится погрузка золы в железнодорожные золовозы или автозоловозы.

По расчетам, окупаемость капитальных затрат на создание установки от прибыли за реализацию сухой золы по 2 - 3 руб. за 1 т произойдет за 6 лет, а от прибыли за счет экономии цемента всего за 1 год.

ПРИЛОЖЕНИЕ 2

Отделение приготовления шлама рассчитано на производство 30 тыс. м 3 железобетонных изделий в год и может быть расширено для обеспечения производства 100 тыс. м 3 изделий в год.

Зола в отвале перемещается с помощью бульдозера в бурты, экскаватором грузится в железнодорожные полувагоны и доставляется на завод. За пять летних месяцев на заводе создается запас золы на всю зиму в открытом складе.

Рис. 2. Схема переработки золошлаковой смеси и использования шлама

1 - железнодорожный полувагон; 2 - открытый склад золошлаковой смеси, доставленной из отвала; 3 - экскаватор на гусеничном ходу; 4 - самосвал для подачи золошлаковой смеси в бассейн; 5 - самоходная шламомешалка; 6 - бассейн для приготовления шлама; 7 - шламонасос; 8 - шламопровод в бункер бетоносмесительного отделения; 9 - бункер для шлама; 10 - дозатор для шлама; 11 - бетоносмесительное отделение

В отделении приготовления шлама (рис. ) имеются два шламбассейна емкостью по 36 м 3 , работающие поочередно на приготовление и расход шлама. Экскаватор грузит золу из открытого склада в автосамосвал, который перемещает ее в шламбассейн. Скоростные самоходные мешалки перемешивают смесь с водой и добавкой СДБ в количестве, обеспечивающем получение шлама постоянного состава и консистенции. Шлам насосом перекачивается в дозировочное отделение бетоносмесительного узла и расходуется через жидкостный автоматический дозатор. Дозируемое количество шлама содержит 90 - 100 % необходимого количества воды для получения бетонной смеси. Получаемая бетонная смесь (см. прил. ) имеет осадку конуса 20 - 24 см.

Капитальные затраты на создание отделения 67,4 тыс. руб. Возможная годовая экономия 118,6 тыс. руб. складывается из уменьшения расхода цемента на 125 кг/м 3 бетона и дефицитного песка до 30 %, а также исключения затрат на работы по отделке поверхностей панелей под окраску.

Снижение стоимости изделия составляет 2 р. 36 к. на 1 м 3 , или 4 %.

Разработанная технология изготовления панелей стен и перекрытий позволила достигнуть высокого качества поверхности изделий, уменьшить время уплотнения смеси (с требуемой осадкой конуса 20 - 24 см) в кассетах конструкции Гипростроммаша до 2 - 3 с и отказаться от шпаклевки поверхности изделий под окраску. Одновременно в результате сокращения длительности вибрирования кассет значительно улучшились условия труда в цехе.

ПРИЛОЖЕНИЕ 3

Таблица 1


Составы тяжелого бетона с добавкой золы на портландцементе или шлакопортландцементе, гранитном щебне крупностью 10 - 20 мм и мелкозернистом кварцевом песке, твердеющего в условиях тепловой обработки

Марка бетона

на шлакопортландцемеите марки 300

на портландцементе марка 400

на портландцементе марки 500

осадка конуса, см

жесткость, с

Таблица 2

Составы тяжелого бетона на портландцементе или шла копортландцементе, гранитном щебне крупностью 10 - 20 мм и мелкозернистом кварцевом песке, твердеющего в условиях тепловой обработки

Марка бетона

Удобоукладываемость бетонной смеси

Расход материалов на 1 м 3 бетона, кг

на портландцементе марки 400

на портландцементе марки 500

осадка конуса, см

жесткость, с

Таблица 3

Составы бетона на заполнителе из золошлаковой смеси, приготовленного в бетоносмесителе принудительного действия и твердеющего в условиях тепловой обработки

Марка бетона

Удобоукладываемость бетонной смеси

Расход материалов на 1 м 3 бетона, кг

на шлакопортландцементе марки 300

на портландцементе марки 400

на портландцементе марки 500

осадка конуса, см

жесткость, с

золошлаковая смесь

золошлаковая смесь

золошлаковая смесь