Схема подключения электродвигателя 220в через конденсатор. Схемы подключения асинхронного и синхронного однофазных двигателей

Данная публикация будет, непременно, полезна новеньким и для тех, кто любит своими руками и головой делать различные вещи, не имея простых познаний, но владея неплохой сообразительностью. Эта маленькая статейка вам в жизни очень понадобится. Знать устройство пусковой и рабочей обмоток, нужно непременно. Я бы даже сравнил это, как в математике, с таблицей умножения. Начну с того что, однофазовые движки имеют две разновидности обмоток – пусковую и рабочую. Эти обмотки отличаются и по сечению провода и по количеству витков. Осознав один раз, вы я думаю, уже это не забудете никогда.


Рабочая обмотка огромным сечением

1-ое – рабочая обмотка всегда имеет сечение провода большее , а как следует ее сопротивление будет меньше. Поглядите на фото наглядно видно, что сечение проводов различное. Обмотка с наименьшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Наглядно показаны обмотки

А сейчас несколько примеров, с которыми вы сможете столкнуться:

Если у мотора 4 вывода, то обнаружив концы обмоток и после замера, вы сейчас просто разберетесь в этих 4 проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая . Подключается все очень просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из их различия нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет поменяются, от подключения пусковой обмотки, а конкретно – меняя концы пусковой обмотки.

Последующий пример. Это когда движок имеет 3 вывода. Тут замеры будут смотреться последующим образом, к примеру – 10 ом , 25 ом , 15 ом . После нескольких измерений найдите кончик, от которого показания, с 2-мя другими, будут 15 ом и 10 ом . Это и будет, один из сетевых проводов. Кончик, который указывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Тут, чтоб поменять вращение, нужно будет добираться до схемы обмотки.

Очередной пример, когда замеры могут демонстрировать 10 ом , 10 ом , 20 ом . Это тоже одина из разновидностей обмоток. Такие, шли на неких моделях стиральных машин, ну и не только лишь. В этих движках, рабочая и пусковая – однообразные обмотки (по конструкции трехфазных обмоток). Тут различия нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой, также осуществляется через конденсатор. Рекомендую прочесть ссылки, которые установлены в статье.

Вот кратко и все, что необходимо знать вам по этому вопросу.

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД — конденсаторный двигатель
  • 25 — мощность 25 (Вт)
  • У4 — климатическое исполнение

Вот его внешний вид.



Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) - провода красного цвета
  • пусковая (В1-В2) — провода синего цвета


В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя .

1. Сечение проводов

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.


Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.


Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).


Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).


Делаем вывод: первая обмотка — пусковая, вторая — рабочая.


Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).




По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

  • (U1-U2) — рабочая
  • (Z1-Z2) — пусковая

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

  • (С1-С2) — рабочая
  • (В1-В2) — пусковая

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.



Одеваю бирки на провода. Вот что получилось.



Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно!!! Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так!!!

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.


В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.




Вот, что у меня получилось:

  • (1-2) — 301 (Ом)
  • (1-3) — 431 (Ом)
  • (2-3) — 129 (Ом)


Отсюда делаем следующий вывод:

  • (1-2) — пусковая обмотка
  • (2-3) — рабочая обмотка
  • (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его

Сегодня мы рассмотрим подключение однофазного двигателя переменного тока. К таким относят асинхронные и синхронные моторы, питающиеся от одной фазы, которая обычно имеет напряжение 220 Вольт. Они очень распространены в бытовой сфере и мелком производстве, частном предпринимательстве.

Для разгона асинхронного двигателя требуется создать вращающееся магнитное поле. С этим легко справляется трехфазный источник питания, где фазы сдвинуты друг относительно друга на 120 градусов. Но если речь идет о том, как подключить однофазный электродвигатель, то встает проблема: без сдвига фаз вал не начнет вращаться.

Внутри однофазного асинхронного мотора располагаются две обмотки: пусковая и рабочая. Если обеспечить сдвиг фаз в них, то магнитное поле станет вращающимся. А это главное условие для запуска электродвигателя. Сдвигать фазы можно путем добавочного сопротивления (резистора) или индуктивной катушки. Но чаще всего используют емкости – пусковой и/или рабочий конденсаторы.

С пусковой емкостью

В большинстве случаев схема включает в себя только пусковой конденсатор. Он активен только во время запуска мотора. Поэтому способ хорош, когда пуск обещает быть тяжелым, в противном случае вал не сможет разгоняться из-за небольшого начального момента. После разгона пусковой конденсатор отключается, и работа продолжается без него.

Схема подключения двигателя со вспомогательной емкостью представлена на рисунке выше. Для ее реализации вам потребуется реле или, как минимум, одна кнопка, которую вы будете зажимать на 3 секунды во время запуска мотора в ход. Вспомогательный конденсатор вместе со вспомогательной обмоткой включаются в цепь лишь на некоторое время.

Такая схема обеспечивает оптимальный начальный крутящий момент, если имеют место незначительные броски переменного тока во время пуска. Но есть и недостаток – при работе в номинальном режиме технические характеристики падают. Это обусловлено формой магнитного поля рабочей обмотки: оно у нее овальное, а не круговое.

С рабочей емкостью

Если пуск легкий, а работа тяжелая, то вместо пускового конденсатора понадобится рабочий. Схема подключения показана ниже. Особенность заключается в том, что рабочая емкость вместе с рабочей обмоткой включена в цепь постоянно.

Схема обеспечивает хорошие характеристики при работе в номинальном режиме.

С обоими конденсаторами

Компромиссное решение – использование вспомогательной и рабочей емкости одновременно. Этот способ идеален, если двигатель переменного тока пускается в ход уже с нагрузкой, и сама работа тяжела для него. Посмотрите, схема ниже – это словно две схемы (с рабочей и вспомогательной емкостью), наложенные друг на друга. При запуске на несколько секунд будет включаться пусковой механизм, а второй накопитель будет активен все время: от пуска до завершения работы.

Расчет емкостей

Наибольшую сложность для начинающих представляет расчет емкости конденсаторов. Профессионалы подбирают их опытным путем, прислушиваясь к мотору во время запуска и работы. Так они определяют, подходит накопитель, или нужно поискать другой. Но с небольшой погрешностью в большинстве случаев емкость можно рассчитать так:

  • Для рабочего накопителя: 0,7-0,8 мкФ на 1000 Ватт мощности электрического двигателя;
  • Для пускового конденсатора: больше в 2,5 раза.

Пример: у вас асинхронный однофазный электродвигатель на 2 кВт. Это 2000 Ватт. Значит, при подключении с рабочей емкостью нужно запастись накопителем 1,4-1,6 мкФ. Для пусковой потребуется 3,5-4 мкФ.

Подключение однофазного синхронного электродвигателя

Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.

Метод разгона

Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.

Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:

  1. Вручную;
  2. С использованием второго двигателя.

Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.

При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.

Асинхронный пуск синхронного мотора

Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.

26. СХЕМЫ ОБМОТОК ОДНОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

В однофазных двигателях с пусковой обмоткой главная обмотка обычно занимает 2 / 3 , а вспомогательная - 1 / 3 общего числа пазов статора. В этих двигателях число пазов на полюс для каждой фазы определяется по формулам:

где q A - число пазов на полюс главной фазы; q В - число пазов на полюс вспомогательной фазы; z A = 2 / 3 - число пазов, занимаемых главной фазой; z B = 1 / 3 - число пазов, занимаемых вспомогательной фазой; z - общее число пазов; - число полюсов.

В однофазных конденсаторных двигателях пазы статора обычно делят поровну между обеими фазами, т. е. z A =z B , и число пазов на полюс определяется по формуле

Шаг по пазам для однофазных обмоток определяется так же, как и для трехфазных. Двухслойные обмотки выполняются с укорочением обычно на 1 / 3 полюсного деления с равными шагами для главной и вспомогательной обмоток. Шаг двухслойной обмотки

Соединение катушечных групп и образование параллельных ветвей в однофазных обмотках производится по тем же правилам, что и для трехфазных обмоток.

При построении схем двигателей с повышенным сопротивлением пусковой фазы надо учитывать наличие в ней бифилярной обмотки.

Для удобства ремонта пусковую обмотку обычно располагают поверх главной (ближе к клину).

Примерный порядок составления схемы однофазной обмотки двигателя с пусковым элементом. Последовательность составления схемы однослойной обмотки разберем на примере

2р = 4, z = 24.

Сначала находят число пазов, занимаемых главной фазой,

Число пазов на полюс главной фазы

Число пазов на полюс вспомогательной фазы в два раза меньше, чем главной, т. е.

Далее на чертеже надо представить последовательность чередования пазов главной и вспомогательной фаз (рис. 60, а) и проставить направление тока в главной фазе, исходя из правил: под соседними полюсами направление тока меняется на противоположное (рис. 60, б ). Чтобы на схеме не оказалась разрезанной катушка главной фазы при выполнении наиболее распространенного типа обмотки вразвалку, первую катушечную группу разбивают на две половины (пазы 1,2 и 23,24).

В соответствии с проставленным направлением тока соединяют пазовые части катушек, в результате этого образуются катушечные группы или полугруппы. При этом возможны различные варианты. При диаметральном шаге

одинаковом для всех катушек, получается простая шаблонная обмотка (рис. 60, в ), число катушечных групп которой равно числу пар полюсов р. Но такая обмотка почти не применяется ввиду больших размеров лобовых частей. Если разделить каждую катушечную группу на две полугруппы, получим шаблонную обмотку вразвалку (рис. 60, г) с меньшим шагом и меньшей длиной витка. Однако из-за большой компактности лобовых частей чаще применяется концентрическая обмотка вразвалку (рис. 60,5). При больших значениях q A используется также концентрическая обмотка, у которой катушечная группа подразделяется на три полугруппы (см. рис. 68). По виду лобовых частей эта обмотка напоминает трехплоскостную трехфазную концентрическую.

Начало фазы может быть в принципе выбрано из любого паза, исходя из удобства выполнения обмотки. Начиная обход всех пазов из первого паза и следя за направлением тока, соединяем катушечные группы (полугруппы) между собой (рис. 60, е) и няходим ко-



Рис. 60. Построение схемы однослойной обмотки однофазного двигателя с пусковым элементом: а - последовательность чередования пазов главной и вспомогательной фаз. б - направление тока в пазовых частях катушек главной фазы, в - простая шаблонная обмотка, г - шаблонная обмотка вразвалку, д - концентрическая обмотка вразвалку, е - схема главной и вспомогательной фаз концентрической обмотки вразвалку

нец фазы, обойдя все пазы рабочей обмотки. Соединение полугрупп производится по правилу: конец полугруппы соединяется с концом соседней полугруппы той же фазы, начало - с началом, т. е. так же, как и в трехфазной однослойной обмотке вразвалку, где катушечная группа разделена на две полугруппы.

Рис. 61. Однослойные обмотки вразвалку однофазных двигателей при 2р=2, z=12: а - шаблонная, б - концентрическая



Рис. 62. Однослойная (шаблонная вразвалку) обмотка однофазного двигателя при 2р=4, z=36

Схему вспомогательной фазы выполняют по тем же правилам, только она имеет обычно меньшее число катушек в группе (полугруппе). Шаг ее может быть таким же, как у главной фазы или иным.

Типичные схемы однослойных обмоток двигателей с пусковыми элементами приведены на рис. 61,62.

Схему двухслойной обмотки двигателя с пусковым элементом можно составить в такой последовательности. Сначала определяют шаг

обмотки, число пазов на полюс для главной и вспомогательной фаз q A и q B . В соответствии с шагом обмотки и числом катушек в группе, равным q A , вычерчивается первая катушечная группа главной фазы (рис. 63,64), рядом с ней катушечная группа вспомогательной фазы, затем опять катушечная группа главной фазы и т. д. Шаги по пазам для обеих фаз берутся одинаковыми. Проставляется направление тока в верхних сторонах катушек главной фазы (под соседними полюсами меняется на противоположное, как и в одно-

Рис. 63. Двухслойная обмотка однофазного двигателя при 2р=2, z=18, q A = 6, q B = 3, y A =y B =6(1-7)



Рис. 64. Двухслойная обмотка однофазного двигателя при 2р=4, z=24, q A =4, q B =2, у А =у B =4(1-5)

слойной обмотке). Последовательное соединение катушечных групп в фазе также выполняется по правилу: конец с концом, начало с началом, при этом не будет нарушена полярность полюсов. Соединения во вспомогательной фазе производятся аналогичным образом.

Примерный порядок составления схемы однофазной однослойной обмотки двигателя с повышенным сопротивлением вспомогательной фазы. Схема главной фазы у двигателя с повышенным сопротивле-

Рис. 65. Выполнение катушки с бифилярной обмоткой: а - катушка, разделенная на две секции, б - катушка с бифилярной обмоткой, в - обозначение катушки с бифилярной обмоткой на схеме; 1 - основная секция, 2 - бифилярная секция, H и K - начало и конец катушки

нием вспомогательной фазы такая же, как и у двигателей с пусковыми элементами.

При составлении схемы вспомогательной фазы надо учитывать, что в каждой катушке часть ее витков намотана встречно. Это уменьшает число эффективных проводников в пазу. Встречно намотанные витки нейтрализуют действие такого же количества витков, намотанных в основном направлении, образуя бифилярную обмотку, поэтому для нахождения числа эффективных витков в катушке (эффективных проводников в пазу) надо из общего числа вычесть удвоенное число встречно намотанных витков. Если, например, в пазу лежит катушка, в которой всего 81 виток, из них встречно намотаны 22, то число эффективных проводников в пазу будет: 81-2x22=37.

Для определения числа встречно намотанных витков при известных общем числе проводников в пазу и числе эффективных проводников в пазу надо произвести обратное действие, т. е. из общего числа вычесть число эффективных проводников и полученный результат разделить на два. При общем числе проводников 81 и числе эффективных - 37 число встречно намотанных витков должно быть:

Катушку с бифилярной обмоткой можно получить, если уложить в одни и те же пазы две секции катушки, одна из которых поворачивается на 180° вокруг параллельной пазам оси. Правая и левая стороны повернутой секции при этом меняются местами (рис. 65). В пазах, где расположена катушка с бифилярной обмоткой, ток

Рис. 66. Однослойная концентрическая вразвалку обмотка при 2р=4, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной обмотки: а - катушка с бифилярной обмоткой изображена в виде двух секций, б - то же, в виде целой катушки



Рис. 67. Однослойная концентрическая вразвалку обмотка при 2р=2, z=18 однофазного двигателя с повышенным сопротивлением вспомогательной фазы: а - при намотке против часовой стрелки, б - при намотке по часовой стрелке

Рис. 68. Однослойная концентрическая с разбивкой катушечной группы на три части обмотка при 2р=2, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной фазы

Рис. 69. Однослойная концентрическая с разбивкой катушечной группы на три части обмотка при 2р=2, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной фазы и соединением главной фазы в две параллельные ветви

проходит по одной секции в едином направлении, по другой - в противоположном. Полярность полюсов определяется направлением тока в катушке с большим числом витков, поэтому секцию с большим числом витков условно называют основной, а с меньшим - бифилярной.

На рис. 66,а представлена схема с бифилярной обмоткой во вспомогательной фазе, бифилярная секция условно показана внутри основной. Обычно катушки с бифилярной обмоткой на схемах изоб-

Рис. 70. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=18

ражаются в виде целой катушки с петлей, в которой изменяется направление тока (рис. 65, в и рис. 66, б).

Катушки и катушечные группы с бифилярной обмоткой должны быть соединены таким образом, чтобы полярность под соседними полюсами вспомогательной фазы чередовалась; полярность же полюсов определяется направлением тока в основных секциях.

Типичные схемы обмоток двигателей с повышенным сопротивлением вспомогательной фазы приведены на рис. 67-69.

Всякая обмотка может быть намотана либо по часовой стрелке, либо против нее, если смотреть на статор со стороны схемы. Это определяется навыками обмотчика и принятой технологией изготовления. Пример схемы при двух различных направлениях намотки приведен на рис. 67.

Примерный порядок составления схемы обмотки конденсаторного двигателя. Схемы однофазных конденсаторных двигателей строятся так же, как и схемы однофазных с пусковыми элементами, только при этом надо учитывать, что числа пазов на полюс главной и вспомогательной фаз одинаковы и поэтому схемы обеих фаз также получаются одинаковыми.

Типичные схемы однофазных конденсаторных двигателей приведены на рис. 70-76.

Рис. 71. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=24

Рис. 72. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=24 и соединения каждой из фаз в две параллельные ветви

Рис. 73. Однослойная концентрическая обмотка с «расчесанными» катушками однофазного конденсаторного двигателя при 2р=4, z=24



Рис. 74. Двухслойная обмотка однофазного конденсаторного двигателя при 2р=4, z=24, q А =q B =3, y A =y B =5(1-6)

В ряде случаев для конденсаторных двигателей характерна наличие в обеих фазах «расчесанных» катушек с половинным числом витков. На схеме рис. 73 показаны четыре такие катушки.

Обмотка, представленная на рис. 75, 76, из-за дробного числа пазов на полюс имеет признаки шаблонной вразвалку и двухслойной обмоток и поэтому названа комбинированной.

25. СХЕМЫ ВКЛЮЧЕНИЯ ОДНОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

Однофазные двигатели имеют на статоре две обмотки: рабочую и вспомогательную. Последняя включается только на время пуска и поэтому называется пусковой. Рабочую обмотку называют также главной фазой, а пусковую - вспомогательной. Питание однофазных двигателей осуществляется от однофазной сети.

Широкое распространение имеют однофазные двигатели, у которых постоянно включены две обмотки (две фазы). Такие двигатели по принципу действия относятся к двухфазным, но поскольку их включают в однофазную сеть, а во вспомогательной фазе таких двигателей имеется обычно постоянно включенный конденсатор, то они и называются однофазными конденсаторными двигателями в отличие от однофазных двигателей с пусковой обмоткой.

Роторы однофазных двигателей, в том числе и конденсаторных, выполняют в большинстве случаев короткозамкнутыми.

Пусковая обмотка однофазного двигателя имеет большую плотность тока, включается только на период пуска и по достижении скорости, близкой к номинальной, должна быть отключена. Время нахождения её под током ограничено. Так, например, для микродвигателей единой серии типа АОЛБ, АОЛГ это время во избежание перегрева обмотки не должно превышать 3 с. Частые пуски могут привести к перегреву пусковой обмотки.

Для микродвигателей единой серии допускается три пуска подряд из холодного и один из горячего состояния при условии соблюдения времени нахождения обмотки при пуске 3 с.

Пусковая обмотка отключается центробежным или кнопочным выключателем, реле максимального тока, биметаллическим тепловым реле и другими устройствами.

Для изменения направления вращения однофазного двигателя надо переключить выводы одной из фаз статора.

В зависимости от вида пускового элемента, включаемого во вспомогательную фазу, различают однофазные двигатели с пусковым сопротивлением (рис. 58, а ) и с пусковой емкостью (рис. 58, б ).

Пусковое сопротивление может быть внешним, т. е. расположенным вне обмотки и включенным с нею последовательно, или внесенным. Двигатели с внесенным во вспомогательную обмотку сопротивлением называются также двигателями с повышенным сопротивлением пусковой фазы. В этом случае пусковая обмотка обычно выполняется с бифилярными катушками проводом уменьшенного сечения. Двигатели с пусковой емкостью или внешним сопротивлением называются однофазными двигателями с пусковыми элементами.

Однофазные конденсаторные двигатели имеют или две емкости - пусковую и рабочую (рис. 58, в), или только одну - рабочую (рис. 58, г). Пусковой конденсатор включается только на период пуска и служит для увеличения пускового момента.

В последние годы выпускаются универсальные асинхронные микродвигатели, предназначенные для работы как от трехфазной, так и от однофазной сети. При включении в трехфазную сеть фазы обмотки двигателя включаются треугольником или звездой в зависимости от номинального напряжения сети. В однофазную сеть двигатели включаются по одной из схем (рис. 59). При таких схемах однофазная сеть должна соответствовать большему номинальному напряжению двигателя. Так, например, если двигатель имеет номи-

Рис. 58. Схемы однофазных асинхронных двигателей: а - с пусковым сопротивлением, б - с пусковой емкостью, в - с пусковой и рабочей емкостями (конденсаторный двигатель), г - с рабочей емкостью: А - главная обмотка, В - вспомогательная обмотка, R п -пусковое сопротивление, С п -пусковая емкость, С р - рабочая емкость

Рис. 59. Схемы включения трехфазной обмотки в однофазную сеть: а - при соединении обмоток в звезду с параллельно включенной емкостью, б - при параллельном соединении главной и вспомогательной обмоток

нальные напряжения 127/220 В, то в однофазном режиме он должен работать при напряжении 220 В.