Ритмические процессы в географической оболочке земли. Цикл геологических наук

Геологические циклы

Геологические циклы - это самая крупная единица установленной периодичности Калесник С.В. Общие географические закономерности земли: учебное пособие для географических факультетов университетов / С.В. Калесник. - М.: Мысль, 1970. - С. 85.. Они отразились в смене режимов осадконакопления, вулканизма и магматизма, эпохах расчленения и выравнивания рельефа, периодах формирования кор выветривания и элювиальных образований, в чередовании морских трансгрессий и регрессий, ледниковий и межледниковий, в изменении климата планеты и содержании атмосферных газов.

Вся известная нам геологическая история Земли обнаруживает циклы в несколько сотен миллионов лет, служащих фоном для более коротких (десятки миллионов, миллионы, сотни тысяч лет и др.) циклов, природа которых различна. Наиболее продолжительным астрономическим периодом является галактический год - время между двумя последовательными прохождениями Солнца через одну и ту же точку галактической орбиты. Этот период составляет 180-200 миллионов лет Там же. С. 86.. Колебательными движениями земной коры и обусловленными ими изменениями распределения суши и моря определяется геологическая периодичность с ритмом 35-45 миллионов лет, который положен в основу выделения периодов. Указанные отрезки времени представляют собой своеобразные «сезоны» галактического года, к которому приурочены различные феномены планетной системы: крупные тектоно-магматические циклы, эпохи трансгрессий и регрессий, выравнивания и расчленения суши, возникновение глобальных ледниковых эпох и др.

Существует цикл продолжительностью 85-90 миллионов лет (космическое полугодие, или драконический период у астрономов), обусловленный сменой положения плоскости эклиптики Солнечной системы относительно такой же плоскости Вселенной. При анализе крупных деформаций земной коры и ее поверхности намечается периодичность в 500-570 миллионов лет (утроенный галактический год), причина которого пока не ясна.

История развития Земли за последние 570 миллионов лет делится на три этапа: каледонский (кембрий, ордовик, силур), длительностью около 200 миллионов лет, герцинский (девон, карбон, пермь), длительностью 150-190 миллионов лет, альпийский (мезозой, кайнозой), длительностью около 240 миллионов лет. Последний часто разделяется на раннеальпийский (киммерийский) продолжительностью около 170 миллионов лет и позднеальпийский (альпийский), начавшийся около 70-90 миллионов лет назад Селиверстов Ю.П. Указ. соч. С. 98..

При некотором различии в длительности эти этапы обладают общими чертами, которые позволяют говорить о цикличности: начало каждого этапа ознаменовано общим опусканием земной коры, а завершение ее поднятием. В эпоху опускания господствуют морской режим и однообразный климат, в эпоху поднятий широко распространены суша, мощные складкообразовательные и горообразовательные движения, разнообразные климаты. Средняя (170-190 миллионов лет) продолжительность этих этапов примерно соответствует длительности галактического года. Прямого отражения во времени быть не может, так как надо учитывать запаздывание отражения воздействия на конкретный объект. Существуют предположения о возможном сопоставлении цикличности великих оледенений, повторявшихся примерно через 150-160 миллионов лет, и длительности галактического года (рис. 1) Селиверстов Ю.П. Указ. соч. С. 99..

Сложность проблемы геологических циклов состоит не только в установлении их причин, но и в степени достоверности их существования. Кроме того, отдаленные друг от друга регионы развиваются в тектоническом отношении по-разному. Например, в некоторых областях Южной Сибири проявления складчатости в каледонскую эпоху были разновременны: основная складчатость в Туве была в раннем ордовике, в Западном Саяне - в середине силура, в Кузнецком Алатау - на границе среднего и позднего кембрия.

Механизм, управляющий ритмическими движениями земной коры, еще не выяснен и может быть связан с внутренними особенностями развития Земли или обусловлен длительностью галактического года.

На рисунках 2 и 3 отражена общая картина наиболее существенных геологических ритмов Калесник С.В. Указ. соч. С. 86..

Геология √ одна из фундаментальных естественных наук, изучающая строение, состав, происхождение и развитие Земли. Она исследует сложные явления и процессы, протекающие на ее поверхности и в недрах. Современная геология опирается на многовековой опыт познания Земли и разнообразные специальные методы исследования. В отличии от других наук о Земле, геология занимается исследованием ее недр. Основные задачи геологии состоят в изучении наружной каменной оболочки планеты √ земной коры и взаимодействующих с ней внешних и внутренних оболочек Земли (внешние √ атмосфера, гидросфера, биосфера; внутренние √ мантия и ядро).

Объектами непосредственного изучения геологии являются минералы, горные породы, ископаемые органические остатки, геологические процессы.

2. Цикл геологических наук.

Геология тесно связана с другими науками о Земле, например с астрономией, геодезией, географией, биологией. Геология опирается на такие фундаментальные науки как математика, физика, химия. Геология является синтетической наукой, хотя в то же время распадается на множество взаимосвязанных отраслей, научных дисциплин, изучающих Землю в разных аспектах и получающих сведения об отдельных геологических явлениях и процессах. Так, изучением состава литосферы занимаются: петрология, исследующая магматические и метаморфические породы, литология, изучающая осадочные горные породы, минералогия √ наука, изучающая минералы как природные химические соединения и геохимия √ наука о распределении и миграции химических элементов в недрах земли.

Геологические процессы, формирующие рельеф земной поверхности, изучает динамическая геология, частью которой являются геотектоника, сейсмология и вулканология.

Раздел геологии, занимающийся изучением истории развития земной коры и Земли в целом, включает стратиграфию, палеонтологию, региональную геологию и носит название ╚Историческая геология.

Есть в геологии науки, имеющие большое практическое значение. Такие, как о месторождениях полезных ископаемых, гидрогеология, инженерная геология, геокриология.

В последние десятилетия появились и приобретают все большее значение науки связанные с исследованием космоса (космическая геология), дна морей и океанов (морская геология).

Наряду с этим есть геологические науки, находящиеся на стыке с другими естественными науками: геофизика, биогеохимия, кристаллохимия, палеоботаника. К таковым относятся также геохимия и палеогеография. Наиболее близкая и разносторонняя связь геологии с географией. Для географических наук, таких как ландшафтоведение, климатология, гидрология, океанография, более всего важны геологические науки, изучающие процессы, влияющие на формирование рельефа земной поверхности и историю образования земной коры всей Земли.

3. Методы изучения земных недр.

В геологии применяют прямые, косвенные, экспериментальные и математические методы.

Прямые √ это методы непосредственных наземных и дистанционных (из тропосферы, космоса) изучений состава и строения земной коры. Основной √ геологическая съемка и картирование. Изучение состава и строения земной коры производится путем изучения естественных обнажений (обрывы рек, оврагов, склоны гор), искусственных горных выработок (каналы, шуффы, карьеры, шахты) и буровых скважин (мах √ 3,5 √ 4 км. в Индии и ЮАР, Кольская скважина √ более 12 км., проект 15 км.) В горных районах можно наблюдать естественные разрезы в долинах рек, вскрывающих толщи горных пород, собранных в сложные складки и поднятых при горообразовании с глубин 16 √ 20 км. Таким образом, метод непосредственного наблюдения и исследования слоев горных пород применим лишь к небольшой, самой верхней части земной коры. Лишь в вулканических областях по извергнутой из вулканов лаве и по твердым выбросам можно судить о составе вещества на глубинах 50 √ 100 км. и больше, где обычно располагаются вулканические очаги.

Косвенные √ геофизические методы, которые основаны на изучении естественных и искусственных физических полей Земли, позволяющие исследовать значительные глубины недр.

Различают сейсмические, гравиметрические, электрические, магнитометрические и др. геофизические методы. Из них наиболее важен сейсмический (╚сейсмос╩ √ трясение) метод, основанный на изучении скорости распространения в Земле упругих колебаний, возникающих при землетрясениях или искусственных взрывах. Эти колебания называются сейсмическими волнами, которые расходятся от очага землетрясений. Бывают 2 типа: продольные Vp, возникающие как реакция среды на изменения объема, распространяются в твердых и жидких телах и характеризуются наибольшей скоростью, и поперечные волны Vs, представляющие реакцию среды на изменение формы и распространяются только в твердых телах. Скорость движения сейсмических волн в разных горных породах различна и зависит от их упругих свойств и их плотности. Чем больше упругость среды, тем быстрее распространяются волны. Изучение характера распространения сейсмических волн позволяет судить о наличии различных оболочек шара с разной упругостью и плотностью.

Экспериментальные исследования направлены на моделирование различных геологических процессов и искусственное получение различных минералов и горных пород.

Математические методы в геологии направлены на повышение оперативности, достоверности и ценности геологической информации.

4. Строение Земли.

Выделяют 3 оболочки Земли: ядро, мантию и земную кору.

Ядро √ наиболее плотная оболочка Земли. Полагают, что внешнее ядро находится в состоянии, приближающемся к жидкому. Температура вещества достигает 2500 √ 3000 0 С, а давление ~ 300Гпа. Внутреннее ядро, предположительно находится в твердом состоянии. Состав внешнего и внутреннего ~ одинаков √ Fe √ Ni, близкий к составу метеоритов.

Мантия √ самая крупная оболочка Земли. Масса √ 2/3 массы планеты. Верхняя мантия характеризуется вертикальной и горизонтальной неоднородностью. Под континентами и океанами ее строение существенно отличается. В океанах на глубине ~ 50 км., а материках √ 80 √ 120 км. начинается слой пониженных сейсмических скоростей, который носит название сейсмического волновода или астеносферы (т.е. геосфера ╚без прочности╩) и отличается повышенной пластичностью. (Волновод распространяется под океанами до 300 √ 400 км., под материками — 100- 150 км.) К ней приурочено большинство очагов землетрясений. Полагают, что в ней возникают магматические очаги, а также зона подкорковых конвекционных течений и зарождение важнейших эндогенных процессов.

В. В. Белоусов объединяет земную кору, верхнюю мантию, включая астеносферу в тектоносферу.

Промежуточный слой и нижняя мантия отличаются более однородной средой, чем верхняя мантия.

Верхняя мантия сложена преимущественно ферро-магнезиальными силикатами (оливин, пироксены, гранаты), что соответствует перидотитовому составу пород. В переходном слое С основной минерал √ оливин.

Химический состав: оксиды Si, Al? Fe (2+, 3+), Ti, Ca, Mg, Na, K, Mn. Преобладают Si и Mg.

5. Земная кора.

Земная кора √ это верхняя оболочка Земли, сложенная магматическими, метаморфическими и осадочными породами, мощностью от 7 до 70 √ 80 км. Это наиболее активный слой Земли. Для нее характерен магматизм и проявления тектонических процессов.

Нижняя граница земной коры симметрична поверхности Земли. Под материками она глубоко опускается в мантию, и под океанами приближается к поверхности. Земная кора с верхней мантией до верхней границы астеносферы (т.е. без астеносферы) образует литосферу.

В вертикальном строении земной коры выделяют три слоя, сложенных различными по составу, свойствам и происхождению породам.

1 слой √ верхний или осадочный (стратосфера) сложен осадочными и вулканогенно-осадочными породами, глинами, глиняными сланцами, песчаными, вулканогенными и карбонатными породами. Слой покрывает почти всю поверхность Земли. Мощность в глубоких впадинах достигает 20 √ 25 км., в среднем √ 3 км.

Для пород осадочного чехла характерна слабая дислоцированность, сравнительно низкие плотности и небольшие изменения, соответствующие диагенетическим.

2 слой √ средний или гранитный (гранито √ гнейсовый), породы имеют сходство со свойствами гранитов. Сложена: гнейсами, гранодиоритами, диоритами, окализами, а так же габбро, мраморами, силинитами и др.

Породы этого слоя разнообразны по сотаву и степени их дислоцированности. Они могут быть неизменными и метаморфированными. Нижняя граница гранитного слоя называется сейсмический раздел Конрада. Мощность слоя √ от 6 до 40 км. На отдельных участках Земли этот слой отсутствует.

3 слой √ нижний, базальтовый состоит из более тяжелых пород, которые по свойствам близки к магматическим породам, базальтам.

В отдельных местах между базальтовым слоем и мантией залегает так называемый эклогитовый слой с более высокой плотностью, чем базальтовый.

Средняя мощность слоя в континентальной части ~ 20 км. Под горными хребтами достигает 30 √ 40 км., а под впадинами снижается до 12 √ 13 и 5-7 км.

Средняя мощность земной коры в континентальной части (Н. А. Белявский) √40,5 км., мин. √ 7 √ 12 км. в океанах, макс. √ 70 √ 80 км. (высокогорье на континентах).

О геологии наверняка знает каждый, несмотря на то, что она является, пожалуй, единственной естественнонаучной дисциплиной, не изучаемой в школьном курсе. Развитие «геологических» знаний сопутствовало развитию человечества на всех этапах его истории. Достаточно вспомнить, что общая периодизация истории основана на характере используемых для производства орудий труда материалов: каменный, бронзовый и железный век. Добыча и совершенствование технологии обработки полезных ископаемых неизбежно связаны с увеличением знаний о свойствах минералов и горных пород, выработкой критериев поиска месторождений и совершенствованием способов их разработки. Технологический прогресс, в том числе и на современном этапе развития цивилизации, немыслим без использования природных ресурсов.

Вместе с тем, в понимании, близком к современному, термин «геология» впервые был применен лишь в 1657 году норвежским естествоиспытателем М. П. Эшольтом, а как самостоятельная ветвь естествознания геология начала складываться только во второй половине 18 века. В это время были разработаны элементарные приёмы наблюдения и описания геологических объектов и процессов, первые методы их изучения, проведена систематизация разрозненных знаний, возникли первые гипотезы. Этот период связан с именами выдающихся учёных А. Броньяра, А. Вернера, Ж. Кювье, Ч. Лайеля, М. Ломоносова, У. Смита и многих других. Геология становится наукой.

Наука - выработанная в результате деятельности человека, взаимосвязанная развивающаяся система знаний о законах мира.

Компоненты научного познания:

1. Постановка проблемы, т.е. задачи, которая не может быть решена на основании имеющихся знаний.

2. Выработка гипотезы - системы предположений, основанных на ряде фактов. Гипотеза вырабатывается на основании формулировки точек зрения о проблеме. В ходе доказательства одни гипотезы отвергаются, другие подтверждаются фактами и обогащают теорию.

3. Теория - система обобщенного знания о той или иной области (например, теория Ч. Дарвина).

Геология - развивающаяся система знаний о вещественном составе, строении, происхождения и эволюции геологических тел и размещении полезных ископаемых. Таким образом, объектами изучения геологии являются: состав и строение природных тел и Земли в целом; процессы на поверхности и в глубинах Земли; история развития планеты; размещение полезных ископаемых. Намечается определенная иерархия геологических тел (где тела каждого последующего ранга организации вещества образованы закономерным сочетанием тел предыдущего ранга): минерал - горная порода - геологическая формация - геосфера - планета в целом. «Минимальным» объектом, изучаемым в геологии, выступает минерал (составляющие минералы элементарные частицы и химические элементы рассматриваются в соответствующих разделах физики и химии).

Минералы - однородные по составу и строению кристаллические вещества, образовавшиеся в результате природных физико-химических процессов. Изучению минералов посвящена одна из ветвей геологии - минералогия.

Минералогия - это наука о составе, свойствах, строении и условиях образования минералов. Это одна из старейших геологических наук, по мере развития которой от неё отделялись самостоятельные ветви геологических наук.

Горные породы - естественные минеральные агрегаты, образующиеся в глубинах Земли или на её поверхности в ходе различных геологических процессов. По происхождению (генетически) выделяются три типа горных пород: магматические, образующиеся в результате кристаллизации огненно-жидких природных преимущественно силикатных расплавов - магмы и лавы; осадочные, формирующиеся на поверхности Земли в результате физического и химического разрушения существующих пород, осаждения минералов из водных растворов или в результате жизнедеятельности живых организмов; метаморфические, возникающие при преобразовании магматических, осадочных или ранее образовавшихся метаморфических пород в глубинах Земли под воздействием высоких температур и давлений. Горные породы рассматриваются петрографией.

Петрография - наука, занимающаяся изучением состава, строения, происхождения и закономерностей распространения горных пород. Обычно из петрографии выделяется, как самостоятельная наука, литология, изучающая осадочные горные породы.

Геологические формации - закономерное сочетание определенных генетических типов горных пород, связанных общностью условий образования. Геологические формации рассматриваются во многих разделах геологии (петрографии, литологии, геотектонике и др., даже выделяется особое направление - учение о формациях). Учитывая, что выявление формаций, как объектов высокого ранга, возможно лишь при изучении крупных участков земной коры, важная роль в их исследовании отводится региональной геологии.

Региональная геология - раздел геологии, занимающийся изучением геологического строения и развития определенных участков земной коры.

Геосферы - концентрические слои (оболочки), образованные веществом Земли. В направлении от периферии к центру Земли расположены атмосфера, гидросфера (образующие внешние геосферы), земная кора, мантия и ядро Земли (внутренние геосферы). Область обитания организмов, включающая нижнюю часть атмосферы, всю гидросферу и верхнюю часть земной коры, называется биосферой.

Важнейшая роль в изучении геосфер, их состава, протекающих в них процессов и их взаимосвязи, отводится геофизики и геохимии.

Геофизика - комплекс наук, изучающих физические свойства Земли в целом и физические процессы, происходящие в её твёрдых сферах, а также в жидкой (гидросфера) и газовой (атмосфера) оболочках.

Геохимия - наука, изучающая историю химических элементов, законы их распределения и миграции в недрах Земли и на её поверхности. Наука, исследующая глубинные процессы, изменяющие состав и строение твердых оболочек Земли, называется геодинамика.

Минералы и горные породы залегают в виде определённых геологических тел. Важными направлением геологии является науки, изучающие формы залегания пород, механизм и причины образования этих форм. Наука, изучающая формы залегания горных пород в земной коре и механизм образования этих форм называется структурная геология (обычно рассматривается как раздел тектоники).

Тектоника - наука о строении, движениях и деформациях литосферы и её развитии в связи с развитием Земли в целом. Геологами приходится иметь дело с толщами горных пород, накопившимися на миллиарды лет. Поэтому ещё одним важнейшее направление включает науки, восстанавливающие по следам, сохранившимся в толщах горных пород, события геологической истории и их последовательность.

Геохронология - учение о последовательности формирования и возрасте горных пород.

Стратиграфия - раздел геологии, занимающийся изучением последовательности образования и расчленением толщ осадочных, вулканогенно-осадочных и метаморфических пород, слагающих земную кору. Обобщающей дисциплиной этого направления является историческая геология - наука, изучающая геологическое развитие планеты, отдельных геосфер и эволюцию органического мира. Все названные геологические науки тесно связаны с палеонтологией, возникшей и развивающейся на стыке геологии и биологии.

Палеонтология – наука, изучающая по ископаемым остаткам организмов и следам их жизнедеятельности историю развития растительного и животного мира прошлых геологических эпох.

Прикладное направление геологических наук также включает в себя ряд важных разделов: геологию полезных ископаемых; гидрогеологию - науку о подземных водах; инженерную геологию, изучающую геологические условия строительства различных сооружений и др.

Многогранность объектов изучаемых геологией превращает её комплекс взаимосвязанных научных дисциплин . При этом, в большинстве случаев, каждая отдельная дисциплина включает в себя три аспекта: описательный (изучающий свойства объекта, классифицирующий их и пр.), динамический (рассматривающий процессы их образования и изменения) и исторический (рассматривающий эволюцию объектов во времени).

По области использования результатов научные исследования делятся на фундаментальные и прикладные. Цель фундаментальных исследований - открытие новых основополагающих законов природы или способов и средств познания. Цель прикладных - создание новых технологий, технических средств, предметов потребления. Применительно к геологии необходимо отметить следующие практические задачи: открытие новых месторождений полезных ископаемых и новых способов их разработки; изучение ресурсов подземных вод (также являющихся полезным ископаемым); инженерно-геологические задачи, связанные с изучением геологические условия строительства различных сооружений; охрана и рациональное использование недр.

Геология имеет тесную связь со многими науками. На приведенном рисунке указаны разделы наук, возникшие в результате взаимодействия геологии со смежными дисциплинами:

Рис.1. Связь геологии с другими науками

Важнейшим методом геологических исследований является геологическая съёмка - комплекс полевых геологических исследований, производимых с целью составления геологических карт и выявления перспектив территорий в отношении наличия полезных ископаемых. Геологическая съёмка заключается в изучении естественных и искусственных обнажений (выходов на поверхность) горных пород (определение их состава, происхождения, возраста, форм залегания); затем на топографическую карту наносятся границы распространения этих пород с указанием характера их залегания. Анализ полученной геологической карты даёт возможность создания модели строения территории и данных о размещении на ней различных полезных ископаемых.

Геология - настоящая наука историческая, и самой важной ее задачей является определение последовательности геологических событий. Не имеет смысла говорить, что чтобы выполнить все эти задачи, с давних времен разработан ряд наипростейших и интуитивно очевидных признаков временных соотношений пород. Все знают, что интрузивные взаимоотношения всегда представлены контактами интрузивных пород и вмещающих их толщ. Так же известно, что обнаружение признаков таких интрузивных взаимоотношений (зоны закалки, даек и т. п.) однозначно указывает на то, что же интрузия образовалась позднее чем вмещающие породы.

Известно, что ксенолиты и обломки попадают в породы, где в результате разрушения их собственного источника, соответственно они все образовались ранее вмещающих их пород, и поэтому могут быть использованы для определения их относительного возраста. И всё же принцип актуализма показал, что геологические неисчерпаемые силы, которые действуют в наше время, родственно работали и в те времена. Невероятно, но Джеймс Хаттон смог сформулировать принцип актуализма фразой «Настоящее - ключ к будущему».

Безапелляционное утверждение не совсем точное. Вероятно, понятие "богатырская сила" - понятие не геологическое, а физическое, к геологии имеющее опосредованное отношение. Грамотнее говорить о геологических процессах. Выявление сил, сопровождающих эти процессы, могло бы стать главной задачей геологии, чего, к сожалению, нет. Стало известно, что в наше время принцип актуализма является тормозом в развитии представлений о процессах геологии. Конечно же, принцип первичной горизонтальности смог подтвердить, что морские осадки при образовании залегают только горизонтально.

Нет сомнения в том, что принцип суперпозиции заключается именно в том, что все породы, которые находятся в не нарушенном складчатостью и разломами залегании, следуют по очерёдности, в порядке их образования. Молодые породы находятся выше, а древние ниже по разрезу. Кстати сказать, принцип финальной сукцессии постулирует, что в одно и то же время в океане были распространены одни и те же организмы. Стоит также акцентировать внимание на вот чем: палеонтолог, определив набор ископаемых остатков в породе, может разыскать одновременно образовавшиеся породы.


ВВЕДЕНИЕ

Геология и цикл геологических наук

Стремление к познанию окружающего мира столь же свойствен­но человеку, как и его стремление использовать ресурсы природы для удовлетворения своих жизненных потребностей. С отдаленных времен люди использовали камни для изготовления орудий труда, охотничьего и боевого оружия, осваивали горные пещеры для ук­рытия от непогоды, возводили из каменных глыб оборонительные и культовые сооружения. Опыт, накопленный в дальнейшем при по­иске руд, выплавке из них металлов, разработках камня для строи­тельства, проведении земляных работ, а также наблюдения за извер­жениями вулканов, землетрясениями и следами вековых колебаний поверхности Земли способствовали становлению науки о Земли - геологии. Начиная с XVIII в. геология активно развивается в тесной связи с развитием других естественных наук.

Главным объектом изучения геологии служила и служит земная кора - наружная каменная оболочка планеты, хотя во второй поло­вине XX в. все большее внимание геологов привлекает состав и со­стояние подкорового вещества планеты в связи с тем, что происхо­дящие в нем процессы оказывают мощное влияние на земную кору.

Развитие геологии происходило в разных направлениях. Изучал­ся состав минералов и горных пород, геологическое строение отдельных регионов, геологические процессы, происходящие на по­верхности Земли и в ее недрах. В результате этого внутри геологии образовалась разветвленная система геологических наук. Процесс дифференциации геологических наук продолжается по мере углуб­ления наших знаний и обнаружения новых фактов. Примером может служить история развития геологических наук, изучающих вещест­венный состав земной коры.

Эти науки складывались постепенно, причем научная мысль раз­вивалась в тесном взаимодействии с практикой. Еще в глубокой древности для получения металлов было необходимо уметь распо­знавать различные камни, изучать и систематизировать их свойст­ва. Так зародилась минералогия, наука о природных химических со­единениях - минералах. Минералогия изучает их происхождение, свойства и изменения под влиянием различных факторов. Само сло­во «минерал» имеет латинский корень «minera», т.е. руда. Первые крупные минералоги были одновременно и горными инженерами, и металлургами, и химиками.

Изучение минералов, многие из которых встречаются в виде хорошо образованных кристаллов, породило кристаллографию (от греч. к rystallos - лед) - науку, предметом изучения которой вначале была геометрия внешних форм, а затем и внутреннее строе­ние кристаллов. Открытие рентгеновских лучей было использовано для выяснения закономерностей расположения атомов в кристал­лическом веществе. Полученные данные способствовали формиро­ванию нового научного направления - кристаллохимии.

В результате различных геологических процессов минералы об­разуют закономерные скопления - горные породы. Наука, изучаю­щая слагающие земную кору горные породы, их состав, структуру, условия образования и залегания, называется петрографией (от греч. petra - скала, камень, grafo - пишу, описываю), причем выделяются петрография горных пород глубинного (магматического и метаморфического) происхождения и литология (от греч. litos - камень) - петрография осадочных пород.

Изучение вещественного состава земной коры происходило па­раллельно с развитием физики и химии, на основании достижений которых создавались новые приборы и разрабатывались специаль­ные методы исследования. Так, на основе законов волновой теории света и технологии изготовления тонких (толщиной 0,03 мм) про­зрачных шлифов из массивных горных пород был изобретен поля­ризационный микроскоп и разработан кристаллооптический метод исследования, который открыл новый мир структуры горных по­род и способствовал общему прогрессу петрографии.

Простое описание свойств минералов и установление их химическо­го состава к концу XIX в. уже не отвечали общему уровню науки. Тре­бовалось выяснение процессов и условий генезиса (от греч. genesis - происхождение, образование) минералов. Благодаря постепенно на­капливающимся новым фактам описательная минералогия уступила место генетической. Успехи в области генетической минералогии соз­дали основание для возникновения еще одной науки - геохимии, ос­новоположниками которой были выдающиеся ученые XX в. В.И.Вер­надский (Россия) и В.М.Гольдшмидт (Норвегия), а в дальнейшее ее развитие внес крупный вклад русский минералог и геохимик А.Е.Ферсман. Эта наука изучает историю химических элементов, закономерно­сти их миграции и распределения в земной коре и на планете в целом. Так, в процессе изучения вещественного состава земной коры сложились три, тесно связанные между собой науки, одна из которых имеет объектом изучения химические элементы (геохимия), другая - их при­родные химические соединения (минералогия), а третья - различаю­щиеся процессами образования, минералогическим и химиче­ским составом горные породы.

В настоящее время для выяснения состава и строения минералов, руд и горных пород, закономерностей их образования используются новейшие достижения естественных наук и техники. Широко при­меняются методы химического, спектроскопического, рентгеноструктурного, термического, кристаллоптического, флюоресцентного анализов.

Не менее активно развивались науки, изучающие строение зем­ной коры и протекающие в них процессы. Таковы вулканология - наука, изучающая извержения вулканов, их строение и состав про­дуктов вулканических извержений, сейсмология (от греч. seismos - землетрясение) - наука, изучающая землетрясения и причины их вызывающие, а также геофизика, изучающая сейсмическим, грави­метрическим, магнитометрическим и геотермическим методами строение глубинных частей земных недр.

Исключительно важное значение имеет геотектоника (от греч. tektonike - строительное искусство) - наука о закономерностях строения и движения земной коры и их порождающих процессах, происходящих в подкоровых глубинах Земли. С геотектоникой не­разрывно связаны структурная геология, изучающая геологические структуры, образуемые горными породами, и региональная геоло­гия, обобщающая и уточняющая данные о строении отдельных ре­гионов.

Сложную научную проблему представляет оценка геологического времени, на протяжении которого происходило становление и разви­тие земной коры, образование и преобразование материков и океа­нов, климатические изменения и развитие органического мира. В процессе исследований в этой области постепенно сформировались следующие геологические науки. Стратиграфия (от лат. stratum - слой) изучает последовательность залегания слоев горных пород и устанавливает их относительный возраст. Стратиграфия опирается на данные палеонтологии (от греч. palaios - древний; ontos - существующие) - науки, находящейся на грани биологии и геоло­гии, изучающей окаменелые остатки древних животных и растений, по которым воссоздается история развития органического мира и вместе с тем устанавливается относительный возраст отложений, со­держащих остатки определенных организмов. Геохронология - нау­ка, изучающая с помощью точных физических и геохимических ме­тодов абсолютный возраст разных геологических объектов. Благо­даря достижениям этих наук мы имеет обоснованную хронологию главных событий геологической истории Земли.

Наконец, в комплексе геологических наук существуют такие, ко­торые имеют определенную практическую направленность. К ним относится геология нефти и газа, геология угля, изучающие обра­зование, строение и закономерности размещения месторождений указанных полезных ископаемых. Металлогения - наука о закономерностях распространения и геологических эпохах образования месторождений металлов, тесно связанная с геологией рудных месторождений, изучающей особенности вещественного состава, об­разование и геологическое строение залежей руд разных металлов. Гидрогеология изучает условия залегания, формирования и хи­мический состав подземных вод. Инженерная геология изучает гор­ные породы в качестве основания при строительстве гражданских и промышленных сооружений, прокладке железных и автодорог, ма­гистральных трубопроводов, плотин и других гидротехнических объ­ектов.

Современные представления о строении, составе Земли, ее образовании и возрасте

Земля входит в состав системы, где центром является Солнце, в котором заключено 99,87% массы всей системы. Характерной осо­бенностью всех планет Солнечной системы является их оболочечное строение: каждая планета состоит их ряда концентрических сфер, различающихся составом и состоянием вещества.

Земля окружена мощной газовой оболочкой - атмосферой. Она является своеобразным регулятором обменных процессов между Землей и Космосом. В составе газовой оболочки выделяется не­сколько сфер, отличающихся составом и физическими свойствами. Основная масса газового вещества заключена в тропосфере, верхняя граница которой, расположенная на высоте около 17 км на экваторе, снижается к полюсам до 8-10 км. Выше, на протяжении стратосфе­ры и мезосферы, нарастает разреженность газов, сложно меняются термические условия. На высоте от 80 до 800 км располагается ионо­сфера - область сильно разреженного газа, среди частиц которого преобладают электрически заряженные. Самую наружную часть га­зовой оболочки образует экзосфера, простирающаяся до высоты 1800 км. Из этой сферы происходит диссипация наиболее легких L атомов - водорода и гелия.

Строение и состав Земли. Еще более сложно стратифицирована сама планета. Масса Земли оценивается в 5,98-10 27 г, а ее объем - в i 1,083-10 27 см 3 . Следовательно, средняя плотность планеты составляет около 5,5 г/см 3 . Но плотность доступных нам горных пород рав­на 2,7-3,0 г/см 3 . Из этого следует, что плотность вещества Земли неоднородна.

Главнейшими методами изучения внутренних частей нашей планеты являются геофизические, в первую очередь наблюдения за скоростью распространения сейсмических волн, образующихся от взрывов или землетрясений. Подобно тому, как от камня, брошен­ного в воду, в разные стороны расходятся по поверхности воды волны, так в твердом веществе от очага взрыва распространяются упругие волны. Среди них выделяют волны продольных и попе­речных колебаний. Продольные колебания представляют собой чередования сжатия и растяжения вещества в направлении распро­странения волны. Поперечные колебания можно представить как чередующиеся сдвиги в направлении, перпендикулярном распро­странению волны.

Волны продольных колебаний, или, как принято говорить, про­дольные волны, распространяются в твердом веществе с большей скоростью, чем поперечные. Продольные волны распространяются как в твердом, так и в жидком веществе, поперечные - только в твер­дом. Следовательно, если при прохождении сейсмических волн через какое-либо тело будет обнаружено, что оно не пропускает попе­речные волны, то можно считать, что это вещество находится в жид­ком состоянии. Если через тело проходят оба типа сейсмических волн, то это - свидетельство твердого состояния вещества.

Скорость волн увеличивается с возрастанием плотности веще­ства. При резком изменении плотности вещества скорость волн будет скачкообразно меняться. В результате изучения распространения сейсмических волн через Землю обнаружено, что имеется несколь­ко определенных границ скачкообразного изменения скоростей волн. Поэтому предполагается, что Земля состоит из нескольких концентрических оболочек (геосфер).

На основании установленных трех главных границ раздела выде­ляют три главные геосферы: земную кору, мантию и ядро (рис. 1).

Первая граница раздела характеризуется скачкообразным увели­чением скоростей продольных сейсмических волн от 6,7 до 8,1 км/с. Эта граница получила название раздела Мохоровичича (в честь серб­ского ученого А. Мохоровичича, который ее открыл), или просто гра­ница М. Она отделяет земную кору от мантии. Плотность вещества земной коры, как указано выше, не превышает 2,7-3,0 г/см 3 . Граница М расположена под континентами на глубине от 30 до 80 км, а под дном океанов - от 4 до 10 км.

Учитывая, что радиус Земного шара равен 6371 км, земная кора представляет собой тонкую пленку на поверхности планеты, состав­ляющую менее 1% ее общей массы и примерно 1,5% ее объема.

Мантия - самая мощная из геосфер Земли. Она распространяет­ся до глубины 2900 км и занимает 82,26% объема планеты. В мантии сосредоточено 67,8% массы Земли. С глубиной плотность вещества мантии в целом возрастает с 3,32 до 5,69 г/см 3 , хотя это происходит неравномерно.

На контакте с земной корой вещество мантии находится в твер­дом состоянии. Поэтому земную кору вместе с самой верхней частью мантии называют литосферой.

Агрегатное состояние вещества мантии ниже литосферы недос­таточно изучено и по этому поводу имеются различные мнения. Предполагается, что температура мантии на глубине 100 км состав­ляет 1100-1500°С, в глубоких частях - значительно выше. Давление на глубине 100 км оценивается в 30 тыс.атм., на глубине 1000 км -1350 тыс. атм. Несмотря на высокую температуру, судя по распро­странению сейсмических волн, вещество мантии преимущественно твердое. Колоссальное давление и высокая температура делают не­возможным обычное кристаллическое состояние. По-видимому, вещество мантии находится в особом высокоплотном состоянии, которое на поверхности Земли невозможно. Уменьшение давления или некоторое повышение температуры должны вызвать быстрый переход вещества в состояние расплава.

Мантию подразделяют на верхнюю (слой В, простирающийся до глубины 400 км), промежуточную (слой С - от 400 до 1000 км) и нижнюю (слой Д - от 1000 до 2900 км). Слой С именуют также слоем Голицина (в честь русского ученого Б.Б.Голицина, установив­шего этот слой), а слой В - слоем Гутенберга (в честь выделившего его немецкого ученого Б.Гутенберга).

В верхней мантии (в слое В) имеется зона, в которой скорость поперечных сейсмических волн значительно уменьшается. По-ви­димому, это связано с тем, что вещество в пределах зоны частично находится в жидком (расплавленном) состоянии. Зона пониженной скорости распространения поперечных сейсмических волн предпо­лагает, что жидкая фаза составляет до 10%, что отражается на более пластичном состоянии вещества по сравнению с выше и ниже рас­положенными слоями мантии. Относительно пластичный слой пониженных скоростей сейсмических волн получил название астеносферы (от греч. asthenes - слабый). Мощность ослабленной зоны достигает 200-300 км. Располагается она на глубине пример­но 100-200 км, но глубина меняется: в центральных частях океанов астеносфера располагается выше, под устойчивыми участками ма­териков опускается глубже.

Астеносфера имеет весьма важное значение для развития гло­бальных эндогенных геологических процессов. Малейшее наруше­ние термодинамического равновесия способствует образованию огромных масс расплавленного вещества (астенолитов), которые поднимаются вверх, способствуя перемещению отдельных блоков литосферы по поверхности Земли. В астеносфере возникают маг­матические очаги. Исходя из тесной связи литосферы с астеносфе­рой эти два слоя объединяют под названием тектоносфера.

В последнее время внимание ученых в мантии привлекает зона, расположенная на глубине 670 км. Полученные данные позволяют предполагать, что эта зона намечает нижнюю границу конвективно­го тепломассообмена, который связывает верхнюю мантию (слой В) и верхнюю часть промежуточного слоя с литосферой.

В пределах мантии скорость сейсмических волн в целом воз­растает в радиальном направлении от 8,1 км/с на границе земной коры с мантией до 13,6 км/с в нижней мантии. Но на глубине около 2900 км скорость продольных сейсмических волн резко уменьшает­ся до 8,1 км/с, а поперечные волны глубже вообще не распространя­ются. Этим намечается граница между мантией и ядром Земли.

Ученым удалось установить, что на границе мантии и ядра в ин­тервале глубин 2700-2900 км, в переходном слое Д 1 (в отличие от нижней мантии, имеющей индекс Д) происходит зарождение гигант­ских тепловых струй - плюмов, периодически пронизывающих всю мантию и проявляющихся на поверхности Земли в виде обширных вулканических полей.

Ядро Земли - центральная часть планеты. Оно занимает только около 16% ее объема, но содержит более трети всей массы Земли. Судя по распространению сейсмических волн, периферия ядра на­ходится в жидком состоянии. В то же время наблюдения за проис­хождением приливных волн позволили установить, что упругость Земли в целом очень велика, больше упругости стали. По-видимо­му, вещество ядра находится в каком-то совершенно особом состоя­нии. Здесь господствуют условия чрезвычайно высокого давления в несколько миллионов атмосфер. В этих условиях происходит пол­ное или частичное разрушение электронных оболочек атомов, веще­ство «металлизируется», т.е. приобретает свойства, характерные для металлов, в том числе высокую электропроводность. Возможно, что земной магнетизм является результатом электрических токов, воз­никающих в ядре в связи с вращением Земли вокруг своей оси.

Плотность ядра - 5520 кг/м 3 , т.е. это вещество в два раза тяже­лее каменной оболочки Земли. Вещество ядра неоднородно. На глу­бине около 5100 км скорость распространения сейсмических волн вновь возрастает с 8100 м/с до 11000 м/с. Поэтому предполагают, что центральная часть ядра твердая.

Вещественный состав разных оболочек Земли представляет весь­ма сложную проблему. Для непосредственного изучения состава дос­тупна лишь земная кора. Имеющиеся данные свидетельствуют, что земная кора состоит преимущественно из силикатов, а 99,5% ее мас­сы составляют восемь химических элементов: кислород, кремний, алюминий, железо, магний, кальций, натрий и калий. Все осталь­ные химические элементы в сумме образуют около 1,5%.

О составе более глубоких сфер Земного шара можно судить лишь ориентировочно, используя геофизические данные и результаты изучения состава метеоритов. Поэтому модели вещественного со­става глубинных сфер Земли, разработанные разными учеными, раз­личаются. Можно с большой уверенностью предполагать, что верх­няя мантия также состоит из силикатов, но содержащих меньше кремния и больше железа и магния по сравнению с земной корой, а нижняя мантия - из оксидов кремния и магния, кристаллохимическая структура которых значительно более плотная, чем у этих соединений, находящихся в земной коре.

Еще более гипотетичны представления о составе ядра Земли. Учитывая высокую плотность (9,4- 11,5 г/см 3) и невозможность рас­пространения поперечных сейсмических волн, ученые предполага­ют, что периферия ядра находится в состоянии расплава и состоит из оксидов или сульфидов железа с примесью кремния, углерода и некоторых других элементов. По причине еще большей плотности центральной части ядра можно ожидать, что она близка к составу железных метеоритов и состоит из никелистого железа. В таблице 1 сопоставлены химический состав земной коры, метеоритов и услов­но рассчитанный средний состав Земли в целом.


^ Образование Земли и ее возраст. Земля, как и другие планеты, возникла из солнечного вещества. Документальными свидетелями допланетной стадии развития вещества и ранних этапов существо­вания Земли служат соотношения изотопов и радиоактивность хи­мических элементов, из которых состоят Земля и метеориты. На ос­новании данных астрофизики и космохимии можно предполагать, что задолго до формирования планет Солнечной системы их веще­ство прошло звездную стадию, включавшую синтез ядер атомов в недрах звезд, одна из которых была предком Солнечной системы. В результате Большого Взрыва этой звезды в плоскости ее экватора образовалась дисководная протопланетная туманность.

Исходным материалом для образования планет был так называе­мый звездный газ - разобщенные ионизированные атомы. По мере охлаждения в соответствии с температурными условиями из него возникали твердые частицы и происходила их консолидация. Древ­нейшими твердыми телами Солнечной системы являются метеори­ты. Их возраст по данным ядерной геохронологии составляет 4,5- 4,7 млрд. лет. Абсолютный возраст вещества Луны - 4,7 млрд. лет. Земля как планета имеет близкий к этим данным возраст.

С момента становления планеты начался процесс образования горных пород, слагающих земную кору. Абсолютный возраст наи­более древних горных пород следующий: граниты Кольского полу­острова - 3,1 млрд лет; гнейсы Украины - 3,5; граниты Африки -3,5; амфиболиты Гренландии - 3,75; чарнокиты Антарктиды - 3,9 млрд лет.

Таким образом, становление планеты Земля совершилось на протяжении примерно 0,5 млрд. лет. Около 3,9-4,0 млрд. лет назад происходит образование первых горных пород и, следовательно, начинается геологическая история Земли.

^ Роль геологии в обеспечении развивающейся экономики минеральным сырьем

Значение минеральных ресурсов для развития человеческого об­щества трудно переоценить. Наличие минерального сырья - необ­ходимое условие любой цивилизации, степень его использования отражает уровень развития общества. Недаром ступени развития человечества получили название по составу использовавшегося ми­нерального сырья - каменный век, бронзовый век, железный век.

Использование каждого вида минерального сырья, с одной сто­роны, предполагает определенный уровень развития общественно­го производства. Известно, какое важное значение имеет каменный уголь в современной экономике. Но еще в начале XIX в. владельцы угольных шахт в Америке проводили демонстрационное сжигание каменного угля, рекламируя это непривычное в то время топливо. (" другой стороны, использование нового вида сырья вызывает оп­ределенные изменения в промышленном производстве. Например, одним из основных факторов создания и развития авиационной промышленности явилось открытие и освоение нового металла - алюминия. В 1885 г. во всем мире было добыто всего 3 т алюминия. Этот металл представлял собой лишь интересную редкость. Но с почала XX в. выработка алюминия нарастает быстрыми темпами: перед Первой мировой войной - 50 тыс. т, перед Второй мировой войной - 500 млн. т, в середине XX в. - более 10 млрд. т.

Некоторые минералы были известны и использовались в глубокой древности, практическое использование других происходило по м. ре их открытия и изучения свойств и состава. С изобретением паровой машины приобрел значение каменный уголь, а производство машин обусловило возрастающий спрос на железные руды. Прогресс машинного производства, создание двигателей внутреннего сгорания и появление новых видов транспорта, применение минеральных удобрений в сельском хозяйстве - все это способствовало уве­личению разнообразия используемых видов минерального сырья и возрастанию их добычи. Особенно ярко этот процесс проявился в росте добычи металлов на протяжении XX в. (рис. 2).


На рисунке 3 совмещены две кривые. Одна из них показывает число открытых, другая - число используемых химических элемен­тов в общественном производстве от начала новой эры до нашего времени. Хорошо видно, как резко возрастают обе кривые со второй половины XIX в., причем кривая использования химических эле­ментов приближается к количеству известных элементов.


Для России, благодаря ее обширной территории и разнообразию геологического строения, роль геологии в выявлении природных бо­гатств недр особенно ответственна, так как минеральные ресурсы страны являются важным фактором ее экономического развития. Важнейшие отрасти государственного производства базируются на использовании минерального сырья. Достижения наук геологиче­ского цикла, творчески использованные государственной геоло­гической службой, обеспечили существенную минерально-сырьевую базу России. Открытие геологами залежей железных руд обуслав­ливают производство черных металлов, служащих основой тяжелой индустрии. Обнаруженные месторождения каменного угля, нефти и газа являются главными источниками энергетического сырья, а также поставщиками сырья для химической промышленности. Из месторождений руд цветных металлов поступают химические элемен­ты, необходимые для самых различных отраслей промышленности: машиностроения, приборостроения, промышленности средств транспорта и обороны, для энергетического хозяйства и пр. Без об­наружения месторождений редких и рассеянных химических эле­ментов были бы невозможны такие новые отрасти производства, как радиотехника, электроника, ракетная техника.

Говоря о жизненной важности минерально-сырьевых ресурсов для развивающейся экономики, нельзя обойти проблему экологичес­ких последствий технического прогресса.

Нарастающее потребление минеральных ресурсов в значитель­ной мере связано с несовершенством современных технологий, при которых существенная часть исходных продуктов выходит из про­изводственных циклов и поступает в окружающую среду. По срав­нению с XIX в. в настоящее время мировое потребление одних видов минерального сырья увеличилось в десятки раз (например, каменно­го угля, железа, меди и др.), а других - в сотни раз (например, нефти, алюминия, молибдена и др.). Во всем мире ежегодно извлекается около 100 млрд. т минеральных ископаемых, включая строительные мате­риалы, балласт для дорог и т.п. Если это количество отнести к пло­щади всей мировой суши, то окажется, что с каждого квадратного километра суши ежегодно извлекается около 700 т.

Среди многих негативных последствий хозяйственной деятель­ности современного общества одно из наиболее опасных - про­грессирующее загрязнение биосферы металлами. Техногенные металлы поступают в окружающую среду в иных соотношениях по сравнению с их соотношениями в земной коре, применительно к которым на протяжении длительного времени развивались и адап­тировались живые организмы. При этом значительная часть вы­брасываемых с технологическими и бытовыми отходами металлов выпадает в непосредственной близости от источников загрязнения, создавая антропогенные геохимические аномалии на площади ин­дустриальных центров и больших городов. Это оказывает негатив­ное действие на природу и здоровье населения.

Проблема нейтрализации загрязнения окружающей среды, сба­лансированности использования минеральных ресурсов, совершен­ствования производственных технологий - одна из кардинальных проблем начала 3-го тысячелетия новой истории человечества. Науки геологического цикла, изучающие закономерности рас­пределения и миграции химических элементов, в первую очередь геохимия, должны внести свой вклад в решение этой насущной про­блемы.

^ Краткий обзор истории изучения и освоения недр России

Издавна люди использовали доступные им богатства недр. Из­вестны довольно глубокие шахты для добывания кремней эпохи не­олита. Скифы добывали золото, кельты - выплавляли медь и оло­во. Наши непосредственные предки - славяне - использовали не медь и бронзу, а железо. Железная руда в изобилии находилась на дне озер в виде бобовой руды, которую сгребали черпаками, стоя на плоту. Добывали также дерновые железные руды, срезая лопатой дерн. О железорудных промыслах свидетельствуют до сих пор со­хранившиеся названия населенных пунктов. Например, возле Череповца есть город Устюжна с добавлением «Железопольская», в Мещере - поселок Гусь Железный и т.д. К XVII в. железный про­мысел получил широкое распространение.

Первая попытка государственной организации поиска руд в Рос­сии была предпринята при Петре I. В 1700 г. был создан Приказ Рудокопных дел, который в 1719 г. был преобразован в государственную Берг-Коллегию. Петром был издан указ «Берг-привилегии», в котором, в частности, говорилось: «Соизволяется всем и каждому дается воля, какого бы чина и достоинства ни был, во всех местах, как на собственных, так и на чужих землях искать, копать, плавить, варить и чистить всякие металлы, сиречь золото, серебро, медь, оло­во, свинец, также и минералы». Образцы минералов собирались в "созданную в 1716 г. Кунсткамеру, из которой потом был образован Минеральный кабинет, а еще позже - Минералогический музей Академии Наук. При Петре I были построены железоделательный завод в Карелии (Петрозаводск), заводы Демидовых на Урале, уси­лены тульские заводы. Россия сразу вышла на одно из первых мест по производству железа. Отметим, что в XVIII в. Россия занимала первое место в мире по выплавке черного металла, а по выплавке меди уступала лишь Англии.

К этому времени, помимо железных руд, были открыты многочис­ленные небольшие месторождения меди в Предуралье в медистых песчаниках пермо-триаса, из которых почти два века выплавлялась основная масса меди России.

Вскоре за освоением Урала с его железом, медью, золотом, само­цветами началось освоение в Сибири. Люди Демидова обнаружили на Алтае медные, а затем серебро и свинцово-цинковые руды. Почти одновременно поиски руд начались в Забайкалье в Нерчинском крае. Еще при Петре I был издан приказ строить Нерчинский серебро-свинцовый завод. На протяжении XVIII-XIX вв. за Уральским хреб­том было открыто более тысячи рудных месторождений.

В 1773 г. в Петербурге было организовано Горное училище. Это третья высшая горная школа: первая была создана в 1716 г. в г. Остраве (Чехия), вторая - в 1765 г. во Фрайберге (Саксония).

В дальнейшем оно было преобразовано в Горный кадетский корпус. Во времена Бориса Годунова светлую нефть в бочках привозили и Москву из Печорских лесов. На Апшеронском полуострове с глу­бокой древности известны «вечные огни», с которыми был связан культ огнепоклонников. Строились храмы, где вечно горели нефтяные газы. Нефть и ее продукты использовались для строительства, в медицинских целях, а также в качестве горючего материала. Од­нако только после того, как научились выделять из нефти ценные вещества, нефть стала важнейшим полезным ископаемым. Активная добыча нефти путем бурения началась в мире во второй полови­не XX в. Первая скважина в районе Баку была пробурена в 1869 г. Начало научного изучения минералов и руд связано с деятель­ностью выдающегося ученого-энциклопедиста М.В.Ломоносова (1711-1765 гг.). Первым трудом Ломоносова по минералогии был каталог Минералогического музея, напечатанный в 1745 г. В 1742 г. он написал работу «Первые основания металлургии или рудных дел», которая была издана лишь в 1763 г. с добавлением статьи «О слоях земных». В1757 г. Ломоносов на заседании Академии наук зачитал доклад «Слово о рождении металлов от трясения земли». Незадолго до смерти он планировал описание минералов России и составил план этой работы («Известие о сочиняемой Российской минералогии»).

Основы минералогии как самостоятельной науки в России были заложены академиком В.М.Севергиным (1765-1826). Им был на­писан первый на русском языке курс минералогии («Первые осно­вания минералогии»), составлен оригинальный справочник - опре­делитель минералов и горных пород («Новая система минералов») и выполнено задуманное Ломоносовым описание минералов России («Опыт минералогического землеописания Российского государ­ства»).

На протяжении XIX в. в России сложились крупные научные школы в области геологии, кристаллографии, петрографии, палео­нтологии.

В конце XIX в. в России в связи с развитием капитализма начал­ся промышленный подъем. Резко возросла потребность в минераль­ном сырье - металлах, каменном угле, нефти. Для успешного их об­наружения стало необходимо планомерное изучение геологическо­го строения страны. С начала XIX в. геологическими работами ру­ководил Ученый Комитет Военного корпуса горных инженеров. Те­перь возникла необходимость создать специальную государст­венную геологическую службу. С этой целью в 1882 г. был орга­низован Геологический комитет, в который вошли крупнейшие геологи России. Геологический комитет сыграл важную роль в из­учении геологии нашей страны. Он организовал составление обзор­ной геологической карты Европейской России, детальных геоло­гических карт Донбасса, Криворожского района, рудных районов Урала. Геологические исследования были проведены на отдельных рудоносных площадях Сибири, в нефтеносных районах Кавказа, Прикаспия, Средней Азии, а также вдоль линии Сибирской желез­ной дороги.

Однако возможности Геологического Комитета были небольши­ми. Первоначально в его составе было всего восемь человек (дирек­тор, шесть геологов и делопроизводитель). Этот состав, конечно, не мог обеспечить объема предстоящих работ.

После окончания Первой мировой и гражданских войн вновь начались настойчивые геологические поиски. В 20-х годах откры­ваются уникальные по своим запасам месторождения калийных солей в Соликамске и Хибинское месторождение апатитов. Начина­ются поиски нефти Второго Баку, Ухты, железных руд Курской маг­нитной аномалии, детально изучаются рудные месторождения на Урале.

Геологическая служба была укреплена. На базе Геологического Комитета было создано Геологическое управление, преобразован­ное затем в Комитет по делам геологии, а позже - в Министерство геологии.

Открытие месторождения вольфрама и молибдена, ртути и сурь­мы, ванадия и германия, циркония и бериллия, олова и алмазов - увлекательная история развития целеустремленной научной мыс­ли и беззаветного напряженного труда геологов. Крупные успехи в изучении месторождений минерального сырья связаны с деятель­ностью научных коллективов под руководством крупных ученых: залежей нефти - под руководством И.М.Губкина (1871-1939), месторождений угля - С.И.Степанова (1880-1947), рудных место­рождений – В. А. Обручева (1863-1956), Ю. А. Билибина (1901-1952), С. С. Смирнова (1895-1947) и др.

В настоящее время в нашей стране потребляется около 90 видов минерального сырья, разведанные запасы которых весьма значи­тельны.

^ Геологические знания, современная культура и образование

Как бы ни было велико значение геологических наук для тех­нического прогресса и развития мировой экономики, не меньшее, а может быть и большее значение имеют геологические знания для формирования культурного уровня современного человека. Волна суеверий и предрассудков, всколыхнувшаяся на исходе XX в., свиде­тельствует о существенных пробелах в естественно-научной просве­щенности широких масс населения. В преодолении невежественных заблуждений весьма ответственная роль принадлежит геологи­ческим знаниям. Всеми своими положениями геология свиде­тельствует о материальной реальности окружающего мира, научно объясняет причины землетрясений, вулканических извержений и других внушающих ужас катастрофических природных явлений, раскрывает длительную и сложную историю Земли, многочислен­ными фактами доказывает эволюцию органического мира и проис­хождение человека. Таким образом, геологические знания, наряду со сведениями из области других естественных наук - физики, хи­мии, биологии, географии - являются неотъемлемой частью совре­менной культуры.

Как показано выше, некогда единая наука геология по мере своего развития дифференцировалась на многочисленные науки и направ­ления геологического цикла. Это нашло отражение в организации пре­подавания геологии в системе высшей школы. В высших учебных заведениях геологического профиля каждая из наук геологического цикла преподается в виде самостоятельной учебной дисциплины. Тако­вы курсы минералогии, петрографии, геотектоники, региональной гео­логии и др. Для специалистов не геологического профиля, подготовка которых нуждается в обеспечении определенным объемом геологиче­ских знаний, обычно используется учебная дисциплина, традиционно сохраняющая название «геология». В этом курсе обобщены основопо­лагающие сведения и достижения большей части наук геологического цикла. Сказанное имеет прямое отношение к высшему географичес­кому образованию, в структуре которого предусмотрен значительный объем знаний из области геологических наук, необходимых для важ­нейших физико-географических курсов - геоморфологии, физичес­кой географии России и мира, а в части закономерностей распростра­нения месторождений различных видов минерального сырья - для курсов экономической географии.

Вместе с тем преподавание сведений из области геологии в гума­нитарных, медицинских и многих других вузах по вполне понятным причинам не проводится. Следовательно, большая часть специали­стов с высшим образованием обладает геологическими знаниями, полученными в средней школе. Это накладывает особую ответст­венность на организацию преподавания в средней общеобразова­тельной школе геологических сведений, необходимых для современ­ного культурного уровня.

В настоящее время геология как самостоятельный предмет в про­грамме средней общеобразовательной школы отсутствует. Элемен­ты геологических знаний сообщаются учащимся преимущественно на уроках географии и лишь отдельные данные на занятиях по химии и биологии. Именно на уроках географии учащиеся могут получить общие сведения о строении Земли и земной коры, о минералах и горных породах, о примечательных событиях геологической исто­рии. По этой причине основательная геологическая подготовка учителей географии является необходимой и ответственной частью высшего географического педагогического образования.

Контрольные вопросы к самостоятельной работе студентов

1. Какие науки входят в цикл наук о Земле?

2. Изложите современные представления о строении планеты Земля.

3. Какое значение имеют науки о Земле для современной экономики? Пе-1ечислите главные виды минерального сырья.

4. Кратко охарактеризуйте основные этапы истории освоения недр России.

5. Какие выдающиеся отечественные ученые-геологи Вам известны? В чем включается их вклад в развитие наук о Земле?

6. Каковы роль и значение геологических знаний для современной культуры?

«Литосфера Земли» - Схема образования земли. Действующие вулканы. 5. Образование Мирового океана. 4. Атмосфера из вулканических газов. Внутреннее строение земли. Лава. Потухшие вулканы, Литосфера – антропогенное воздействие. Вулканы. АНДЫ – самые длинные горы на Земле. Образование горных хребтов. Коралловые рифы. Слои земной коры.

«Движение земной коры» - Урок № 22. Разнообразие в залегании горных пород. 5-6 баллов-легкие повреждения зданий. 1-2 балла-слабые толчки, не ощущаются человеком. Грабен. Движение вещества. Горст. 3-4 балла-толчки ощущаются, но разрушений не происходит. 11-12 баллов-разрушается все на земной поверхности. С и л а з е м л е т р я с е н и й.

«Экзогенные процессы» - Распространяются на небольшую глубину – до 20-30 метров. 19. Седиментация – осаждение, накопление перемещённого вещества. Результатом является образование всё большего и большего числа трещин. Транспортировка – перенос продуктов разрушения на другое место. Федеральное государственное образовательное учреждение высшего и профессионального образования.

«Материки» - Африка. География Познание материков. Слайды Шульц Татьяны Сергеевны. Природные зоны Северная Америка. Евразия. Природные зоны Евразия. Африка- второй материк по величине После Евразии. Км. Южная Америка. Тема: Северная Америка. Южная Америка Природные зоны.

«Геологическая история Земли» - А) четвертичный Б) неогеновый В) палеогеновый Запишите в таблицу получившуюся последовательность букв. Расположите перечисленные периоды геологической истории Земли в хронологическом порядке, начиная с самого раннего. 2. Расположите перечисленные периоды геологической истории Земли в хронологическом порядке, начиная с самого раннего.

«Складки» - Форма складок зависит также от соотношения крыльев и замка. Размеры складок характеризуются длиной, шириной, высотой. Классификация складок по положению осевой плоскости. Построение структурной карты методом схождения и профилей структур. Структурная геология и геологическое картирование. Строение надвига или шарьяжа.

Всего в теме 6 презентаций