Общее описание ОКС7. Общее описание ОКС7 Окс 7 описание

Основными подсистемами ОКС7 являются:

o Подсистема переноса сообщений (MTP - Message Transfer Part)

o Подсистемы-пользователи услугами MTP:

· SCCP - подсистема управления соединением сигнализации;

· TUP - подсистема пользователя телефонии;

· ISUP - подсистема пользователя ISDN;

· MUP - подсистема пользователя подвижной связи (NMT);

· HUP - подсистема эстафетной передачи сигналов управления в процессе разговора (NMT);

· TCAP - подсистема возможностей транзакций;

· MAP - прикладная подсистема пользователя подвижной связи (GSM);

· INAP - прикладная подсистема интеллектуальной сети;

· OMAP - подсистема технического обслуживания и эксплуатации.

MTP формирует и предоставляет услуги переноса сигнальной информации (в виде сигнальных сообщений) от пункта-отправителя через сеть ОКС к пункту-адресату.

Пользователи услугами MTP - это подсистемы, которые предоставляют свои услуги либо подсистемам, расположенным выше (как это делает SCCP), либо (как это делает ISUP) прямо пользователям системы ОКС7, каковыми являются разнообразные прикладные процессы (это, в частности, процесс управления коммутацией, процессы управления предоставлением тех или иных дополнительных услуг, процессы эксплуатационного управления и др.).

На рис. 48 представлена архитектура протоколов ОКС7.

сигнальный сеть алгоритм телефонный

Рис. 48.

Сеть связи, использующая ОКС7, состоит из множества узлов коммутации, связанных между собой цифровыми ИКМ-трактами.

Для использования услуг ОКС7, каждый из узлов коммутации должен содержать встроенные средства, позволяющие выполнять функции пункта сигнализации (SP - Signalling Point). Пункт сигнализации способен формировать, передавать, принимать и интерпретировать сигнальную информацию.

Каждому пункту сигнализации присваивается свой уникальный адрес в сети ОКС-7 - код пункта сигнализации (SPC, signalling point code).

Пункты сигнализации SP должны быть связаны между собой цифровыми каналами, выполняющими функции сигнальных звеньев.

Совокупность пунктов сигнализации и звеньев сигнализации образуют сеть общеканальной сигнализации - сеть ОКС7.

В качестве основных понятий следует выделить следующие:

Пункты сигнализации (SP-signalling point) - узлы сети связи, использующие ОКС-7, которые могут передавать и/или принимать сигнальный трафик, т.е. генерировать и/или обрабатывать сигнальные сообщения.

Транзитный пункт сигнализации (STP-signalling transfer point) - пункт сигнализации, который передает принятые сигналы на другой SP или STP, не обрабатывая при этом сигнальные сообщения.

Код пункта сигнализации (SPC - Signalling Point Code) - это уникальный номер пункта сигнализации в сети ОКС-7.

Звено сигнализации (signalling link) - звено сигнализации в системе ОКС-7 используется для передачи сигнальных сообщений между двумя пунктами сигнализации.

Пучок звеньев сигнализации (signalling link set) - представляет собой несколько звеньев сигнализации между двумя соединенными напрямую пунктами сигнализации.

Группа звеньев сигнализации (group of links) - это группа сигнальных звеньев в пучке, имеющих идентичные характеристики. Пучок звеньев может включать одну или более групп звеньев.

В ОКС7 сигнальная информация организуется в виде пакетов, которые передаются между пунктами сигнализации в виде сообщений переменной длины, называемых сигнальными единицами. Существует три типа сигнальных единиц:

· значащая сигнальная единица (MSU) - используется для передачи сигнальной информации, формируемой подсистемами-пользователями или SCCP; повторяется в случае ошибки;

· сигнальная единица состояния звена (LSSU) - используется для контроля состояния звена сигнализации; не повторяется в случае ошибки;

· заполняющая сигнальная единица (FISU) - используется для обеспечения фазирования звена при отсутствии сигнального трафика; не повторяется в случае ошибки.

Рис. 49. Структура MSU

Рис. 50. Структура LSSU

Рис. 51. Структура FISU

Флаг - ограничитель сигнальных единиц - 8-битовая последовательность вида: 01111110. Обычно закрывающий флаг одной сигнальной единицы является открывающим флагом следующей сигнальной единицы.

Индикатор длины указывает на число октетов между полем LI и полем CK. Тип сигнальной единицы идентифицируется индикатором длины (LI) следующим образом:

LI = 0 (FISU), заполняющая сигнальная единица;

LI = 1 или 2 (LSSU), сигнальная единица состояния звена;

LI > 2 (MSU), значащая сигнальная единица.

Индикатор длины может принимать значения в интервале от 0 до 63.

Прямой порядковый номер (FSN) - это порядковый номер сигнальной единицы, в составе которой он передается на противоположный пункт сигнализации.

Обратный порядковый номер (BSN) - это номер подтверждаемой сигнальной единицы. Прямой и обратный порядковые номера - это двоичные числа в циклически повторяющейся последовательности от 0 до 127.

Биты индикации прямого (FIB) и обратного (BIB) направления вместе с прямым и обратным порядковыми номерами используются в базовом методе исправления ошибок, для осуществления контроля последовательности сигнальных единиц и функций подтверждения.

Проверочные биты (СК) формируются пунктом сигнализации, передающим сигнальную единицу. Каждая сигнальная единица содержит 16 проверочных битов для обнаружения ошибок.

Байт служебной информации (SIO):

Рис. 52. Структура SIO

o Индикатор службы (SI):

· 0000- управление сетью сигнализации;

· 0001- тест звена сигнализации;

· 0010- резерв;

· 0011- подсистема SCCP;

· 0100- подсистема TUP;

· 0101- подсистема ISUP;

· 0110- подсистема DUP (вызовы/каналы);

· 0111- подсистема DUP (регистрация/дерегистрация);

· остальные - резерв.

o Поле подвида службы (SSF):

· 00хх- международная сеть;

· 01хх- резерв (для международного применения);

· 10хх- национальная сеть;

· 11хх- резерв (для национального применения).

Индикатор службы SI занимает 4 старших бита SIO, содержится только в значащих сигнальных единицах MSU и указывает, к какой подсистеме пользователя относится сообщение.

Поле подвида службы SSF занимает 4 младших бита SIO и содержит индикатор сети NI и два резервных бита. Индикатор сети позволяет отличить, какой сети принадлежат сообщения: международной национальной.

Поле сигнальной информации (SIF) предназначено для передачи полезной информации по сети сигнализации и может состоять максимум из 272 байтов, форматы и коды которых определяются подсистемой пользователей. Поле SIF содержит информацию, которая должна передаваться между подсистемами пользователей двух пунктов сигнализации. Поле SIF содержит этикетку, которая позволяет:

· осуществлять маршрутизацию сообщений при помощи функций уровня 3 MTP по сети сигнализации к определенному пункту назначения; эта часть этикетки называется этикеткой маршрутизации.

· ассоциировать сообщение на приемной стороне конкретной подсистемы пользователя с определенным каналом, вызовом, управлением или другими транзакциями, к которым относится сообщение.

МТР не распознает содержимое SIF, кроме этикетки маршрутизации, т.е. прозрачно передает содержащуюся в SIF информацию от уровня 4 одного пункта сигнализации к уровню 4 другого.

Структура поля SIF в общем случае:

Рис. 53. Структура поля SIF

Для некоторых подсистем пользователя, кроме этикетки маршрутизации, в состав этикетки входит дополнительная информация, при этом поле SIF будет выглядеть следующим образом:

Структура поля SIF для сообщений ISUP (этикетка типа С):

Рис. 54. Этикетка типа С

Структура поля SIF для сообщений управления MTP (этикетка типа А):

Рис. 55. Этикетка типа А

Код пункта назначения (DPC) указывает пункт назначения сообщения.

Код исходящего пункта (OPC) определяет исходящий пункт сообщения. Поле выбора звена сигнализации (SLS) используется, в случае необходимости, для осуществления разделения нагрузки. Это поле существует во всех типах сообщений и всегда в одном и том же месте. Единственное исключение из этого правила касается некоторых сообщений подсистемы передачи сообщений уровня 3 (например, команда перехода на резерв), для которых функция маршрутизации сообщений в исходящем пункте сигнализации не зависит от поля SLC: в этом случае поля, как такового, не существует, оно заменено другой информацией (например, в случае команды перехода на резерв, идентификация отказавшего звена сигнализации). Код идентификации канала (CIC) используется в качестве этикетки для сообщений сигнализации, ориентированных на соединение.

Поле информации управления МТР выглядит следующим образом

Рис. 56. Структура поля информации управления МТР

Поле состояния (SF) не рассматривается, т.к. оно находится только в сигнальных единицах состояния звена (LSSU) и интереса в данном случае не представляет.

Функциональные подсистемы

Архитектура ОКС-7

Функциональная архитектура системы ОКС-7 устроена так, что множество всех функций системы представлено в ней в виде совокупности функциональных блоков - подсистем, взаимодействующих между собой и поддерживающих друг друга.

Логическую связь между этими подсистемами можно представить в виде многоуровневой структуры, в которой N-й уровень предоставляет свои услуги (N+1)-му уровню, пользуясь при этом услугами, которые предоставляет ему (N-1)-й уровень.

Каждый уровень содержит вполне определенное множество функций и взаимодействует со смежными (сверху и снизу) уровнями через четко определенные интерфейсы.

Основными подсистемами ОКС-7 являются:

ð Подсистема переноса сообщений (MTP - Message Transfer Part)

ð Подсистемы-пользователи услугами MTP:

SCCP – подсистема управления соединением сигнализации;

TUP – подсистема пользователя телефонии;

ISUP – подсистема пользователя ISDN;

MUP – подсистема пользователя подвижной связи (NMT)

HUP – подсистема эстафетной передачи сигналов управления в процессе разговора (NMT)

TCAP – подсистема возможностей транзакций;

MAP – прикладная подсистема пользователя подвижной связи (GSM);

INAP – прикладная подсистема интеллектуальной сети;

OMAP – подсистема технического обслуживания и эксплуатации.

MTP формирует и предоставляет услуги переноса сигнальной информации (в виде сигнальных сообщений) от пункта-отправителя через сеть ОКС к пункту-адресату.

Пользователи услугами MTP - это подсистемы, которые предоставляют свои услуги либо подсистемам, расположенным выше (как это делает SCCP), либо (как это делает ISUP) прямо пользователям системы ОКС-7, каковыми являются разнообразные прикладные процессы (это, в частности, процесс управления коммутацией, процессы управления предоставлением тех или иных дополнительных услуг, процессы эксплуатационного управления и др.).

Уровни модели ОКС-7 не полностью совпадают с уровнями модели OSI. Модель ОКС-7 содержит четыре уровня. Некоторые уровни, входящие в модель OSI, не имеют смысла в модели ОКС-7, и поэтому в ней не определены.

Два первых уровня модели ОКС-7: физический (функции звена данных сигнализации) и канальный (функции звена сигнализации), - реализуют обмен сигнальной информацией между двумя смежными пунктами сигнализации через связывающее эти пункты сигнальное звено и полностью совпадают с одноименными уровнями модели OSI.

Третий уровень модели ОКС-7 – сетевой (функции сети сигнализации) – не обеспечивает всех функций сетевого уровня модели OSI. Для выполнения всех функций сетевого уровня в модели ОКС-7 присутствует подсистема управления соединением сигнализации SCCP (Signalling Connection Control Part), входящая в уровень 4 модели
ОКС-7.

Три нижних уровня модели ОКС-7 образуют подсистему переноса сообщений MTP (Message Transfer Part). Подсистемы MTP и SCCP вместе образуют подсистему сетевых услуг NSP (Network Service Part).

Четветый уровень модели ОКС-7 состоит из подсистем пользователей и приложений.


ОКС №7 – система сигнализации, при которой информация управления установлением соединения (сигнализация) для всех разговорных каналов и/или каналов передачи данных передается в виде блоков данных (сигнальных сообщений) по одному общему каналу сигнализации, который может быть реализован в любом временном интервале (кроме нулевого) одного из первичных трактов ИКМ, входящий в пучок, соединяющий напрямую две взаимодействующие АТС.

ОКС №7 обладает функциями обнаружения и исправления ошибок, вызванных воздействием помех на средства передачи, и автоматической реконфигурацией маршрутов в случае отказов сетевых элементов.

Для повышения надежности в другом ИКМ-тракте пучка, организуется канал для передачи данных ОКС7. Все остальные временные интервалы системы (кроме нулевых) при использовании ОКС7 могут быть задействованы для передачи речи или данных пользователя. Один канал ОКС7 может обслуживать около 4000 разговорных каналов.

Множество всех функций системы ОКС7 представлено в виде совокупности функциональных блоков, именуемых подсистемами, определенным образом взаимодействующих между собой и поддерживающих друг друга. Один и тот же уровень предоставляет услуги вышестоящему уровню и пользуется услугами нижестоящего. Каждый уровень содержит вполне определенное множество функций и взаимодействует со смежными уровнями через четко определенные интерфейсы. В одном уровне может размещаться несколько подсистем; одна подсистема может выполнять функции одного или нескольких смежных уровней.

Первоначально спецификации ОКС7 базировались на требованиях управления телефонными каналами. Чтобы удовлетворить эти требования, система ОКС7 была специфицирована в четырех уровнях – подсистема переноса сообщений, охватывающая уровень 1-3 и подсистемы-пользователи, уровень 4. Когда возникли новые требования, например, для обмена информацией с базами данных, система ОКС7 была расширена новыми функциями.

Основными подсистемами ОКС7 являются:


  • MTP – message transfer part – подсистема передачи сообщений

  • UP – user part – подсистема пользователей услуг МТР

Подсистема МТР формирует и предоставляет услуги переноса сигнальной информации в виде сигнальных сообщений от пункта-отправителя через сеть ОКС к пункту-адресату. Пользователи услуг МТР - это подсистемы, которые, в свою очередь, предоставляют свои услуги либо подсистемам, расположенным выше, либо непосредственно пользователям системы ОКС7, каковыми являются разнообразные прикладные процессы узлов сети связи.

Модель OSI содержит семь уровней, модель ОКС7 содержит только четыре уровня. Функции, выполняемые этими четырьмя уровнями, определенным образом соотносятся с функциями семи уровней модели OSI. Сопоставление двух моделей приведено на рисунке.




Два первых уровня модели ОКС7 - звена пердачи данных и сигнального звена - обеспечивают обмен сигнальной информацией между двумя смежными пунктами сигнализации.

Уровень 1 – физический – функции звена передачи данных .

Преобразует цифровые данные в битовый поток для переноса информации по сети. Этот уровень задает механические и электрические характеристики, соответветствующие используемому физическому интерфейсу. Электрические характеристики: способ кодирования (для передачи цифрового сигнала на большие расстояния), перечень аварийных сигналов (на случай потери синхронизации или самого сигнала).

Уровень 2 – звеньевой (канальный) – функции сигнального звена .

Задача этого уровня состоит в надежной передаче информации (для этого используется какой-либо метод обнаружения и исправления ошибок), а так же контроль последовательности передачи блоков данных.

При приеме потока информации с физического уровня уровень звена данных выделяет из него блоки данных (в качестве разделителя используется специальную битовую последовательность, нигде не повторя­ющуюся внутри блока). Перед передачей блоков данных к вышестоящему уровню, уровень звена данных удаляет из них управляющую информацию.

При приеме данных с вышестоящего уровня управляющая информация добавляет­ся к блокам данных перед передачей их на физический уровень.

Три нижних уровня модели ОКС7 образуют подсистему переноса сообщений МТР. Однако реализованный в подсистеме МТР третий, сетевой уровень, содержит не все функции сетевого уровня модели OSI. Для переноса сообщений по сети ОКС7 подсистема МТР использует дейтаграммный способ с эмуляцией работы по виртуальному каналу. Чтобы повысить надежность передачи сообщений по виртуальному каналу, сетевой уровень МТР предусматривает ремаршрутизацию сообщений при перегрузке или при отказе основного маршрута или смежного узла.

Для поддержки новых услуг (в том числе, услуг Интеллектуальной сети и мобильной связи) и для реализации недостающих функций сетевого уровня OSI в модель ОКС7 введена подсистема управления сигнальными соединениями (SCCP - Signaling connection control part). Подсистемы МТР и SCCP совместно образуют подсистему сетевых услуг (NSP - Network service part). Используя услуги МТР, подсистема SCCP обеспечивает организацию в сети ОКС7 виртуальных соединений и может предоставлять сетевые услуги, как ориентированные на та­кие соединения, так и не требующие их создания.

Возможности МТР в области адресации являются ограниченными, так как эта подсистема может направлять сообщения только в те логические точки пункта сигнализации, адреса которых указаны в четырехбитовом поле индикатора службы октета SIO. Таким образом, в пределах конкретного пункта сигнализации МТР имеет возможность распределять сообщения к любому из максимум 16 пользователей, что явно недостаточно. Подсистема SCCP имеет расширенные возможности, рассматривая всех своих локальных пользователей как подсистемы (обращение к которым происходит путем использования их номеров) и применяя при адресации сообщений совокупность кода пункта назначения с номером подсистемы. Для идентификации конкретного адреса может обеспечиваться вычисление кода пункта сигнализации и номера подсистемы из так называемого глобального адреса (GT, Global title).

В дополнение к расширенным возможностям адресации подсистема SCCP предостав­ляет четыре различные по надежности класса обслуживания (режима доставки сообщений), которые могут быть затребованы вышестоящей подсистемой.

Такое разделение функций между двумя подсистемами оправдывается следующими соображениями. Во-первых, далеко не для всех протоколов сигнализации нужны расширенные функциональные возможности SCCP в отношении адресации и режимов повышенной надежности доставки сообщений. Во-вторых, благодаря выделению функций SCCP в отдельную подсистему оказалось возможным оптимизировать характеристики уровня 3 подсистемы МТР. Необходимость же применения SCCP вызвана тем, что многие приложения, использующие систему ОКС7, не требуют одновременного установления речевой связи и использование для них подсистем-пользователей (например, TUP или ISUP) является неэффективным.

В системе ОКС7 пока не специфицированы подсистемы, предоставляющие услуги, ориентированные на установление соединений, вследствие чего транспортный, сеансовый и прикладной уровни в том виде, в каком они определены в модели OSI, в модели ОКС7 отсутствуют.

Четвертый уровень модели ОКС7 образуют подсистемы-пользователи услугами МТР и/или SCCP, такие как:

TUP (Telephone user part) - подсистема-пользователь, поддерживающая сигнализа­цию телефонной сети;

DUP (Data user part) - подсистема-пользователь поддерживающая сигнализацию сети передачи данных;

ISUP (ISDN user part) - подсистема-пользователь, поддерживающая сигнализацию телефонной сети, сети передачи данных и цифровой сети интегрального обслужива­ния (ISDN);

и т.д.
МТР1 – определяет характеристики передачи по каналу ОКС.

МТР2 – доставка с требуемой достоверностью информации на сети ОКС.

МТР3 – маршрутизация сигнальной информации от подсистемы-пользователя (UP) одного пункта сигнализации (SP) до одноименной подсистемы-пользователя (UP) другого пункта сигнализации (SP) в пределах конкретной сети ОКС.
страница 1

Введение

Система сигнализации № 7 - это универсальная многофункциональная система межстанционной сигнализации, ориентированная на поддержку практически всех уже известных, а также будущих услуг связи. Ее огромный потенциал объясняется блочной функциональной архитектурой, где над единой транспортной подсистемой (MTP) расположены подсистемы пользователей и приложений (TUP, ISUP, MAP, TCAP, MUP и т. д.), предназначенные для обеспечения соответствующих услуг связи. Экономический эффект от внедрения ОКС 7 (общеканальной сигнализации) проявляется даже при обычной телефонной связи.

1. Основы построения технологии ОКС-7

сигнализация маршрутизация сообщение

На протяжении последних ста лет сигнализация развивалась в рамках традиционной телефонии, причем за последние два десятилетия ее эволюция ускорилась как никогда ранее благодаря сращиванию компьютерных и коммутационных технологий.

В контексте телефонии под сигнализацией понимается передача управляющей информации с целью установления/разъединения двухточечных соединений. Сигнализация бывает трех типов - абонентская, т. е. на участке между абонентским терминалом и коммутационной станцией, внутристанционная и межстанционная. Пример абонентской сигнализации приведен на рис.1, где показаны основные сигналы, передаваемые в процессе нормального установления/разъединения соединения между двумя абонентами, подключенными к одной коммутационной станции.

Рисунок 1 - Пример абонентской сигнализации

Межстанционная сигнализация в свою очередь делится на два основных типа - сигнализация по выделенному каналу CAS (Channel Associated Signalling) и сигнализация по общему каналу CCS (Common Channel Signalling) . В системе использован принцип передачи управляющей информации по общему каналу сигнализации, отсюда ее сокращенное название по-русски - ОКС7.

В первом случае (CAS) сигнальная информация передается либо непосредственно по разговорному каналу (внутриканальная сигнализация) либо по каналу, физически привязанному к нему. Во втором случае (CCS) сигнализация полностью отделена от разговорного тракта, и передача сигнальной информации осуществляется по специально выделенному высокоскоростному каналу, общему для пучка разговорных каналов.

На сегодняшний день известны два стандарта систем общеканальной сигнализации:

1. CCITT Signalling System No. 6.

2. CCITT Signalling System No. 7.

Первая из них была разработана в конце 60-х годов и по ряду причин сейчас практически не применяется. Вторая - CCITT No. 7 (ОКС № 7) появилась в конце 70-х годов и предназначена для использования на цифровых сетях с каналами не ниже 64 Кбит/с.

Основными преимуществами ОКС № 7 являются:

· СКОРОСТЬ - в большинстве случаев время установления соединения не превышает одной секунды;

· ВЫСОКАЯ ПРОИЗВОДИТЕЛЬНОСТЬ - один канал сигнализации способен одновременно обслужить несколько тысяч телефонных вызовов;

· ЭКОНОМИЧНОСТЬ - по сравнению с системами CAS во много раз сокращается объем оборудования на коммутационной станции;

· НАДЕЖНОСТЬ - достигается за счет возможности альтернативной маршрутизации в сети сигнализации;

· ГИБКОСТЬ - система передает любые данные, не только данные телефонии.

Популярные словосочетания и аббревиатуры, такие как ISDN, сети подвижной связи, интеллектуальные сети, в действительности, остаются лишь словами на бумаге без системы сигнализации № 7 (ОКС 7) -- единственного средства, обеспечивающего внедрение и функционирование современных услуг связи на сетевом уровне.

Многие производители оборудования ISDN утверждают, будто их продукты обеспечивают "услуги ISDN". Однако область действия услуг, предоставляемых любым терминальным оборудованием ISDN или офисными АТС класса ISDN, ограничена пределами одной коммутационной системы, и не распространяется на абонентов других станций. Развитие сетей подвижной связи также невозможно без ОКС 7. Порой конкурирующих между собой поставщиков услуг сотовой связи объединяет лишь ОКС 7, необходимая для обеспечения автоматического обмена информацией о местонахождении абонента (роуминга). Наконец, для эффективного функционирования интеллектуальных сетей также требуется ОКС 7.

Будучи разработанной для традиционной телефонии, в ОКС № 7 изначально были заложены большие возможности для управления другими услугами связи. Это объясняется прежде всего бумом на рынке услуг телекоммуникаций, который продолжается с начала 80-х годов и еще не достиг своего пика. Именно в 80-х годах ОКС № 7 интенсивно разрабатывалась ведущими производителями коммутационного оборудования и параллельно утверждалось в качестве стандарта CCITT. Уже сейчас ОКС № 7 является обязательным элементом следующих цифровых сетей связи:

PSTN - Public Switched Telephone Network

ISDN - Integrated Services Digital Network

PLMN - Public Land Mobile Network

IN - Intelligent Network

Взаимодействие данных систем также осуществляется посредством ОКС № 7 (рис. 2).

Рисунок 2 - Взаимодействие цифровых сетей по ОКС № 7.

В настоящее время практически всеми международными институтами стандартизации телекоммуникаций (ITU-T, ETSI, ANSI, ATM Forum и др.) разрабатываются стандарты ОКС № 7 для широкополосных сетей - Broadband-ISDN, Universal Mobile Telecommunications System, Broadband-IN.

2. Основные понятия и элементы ОКС № 7

В процессе развития сетей связи применялся и применяется до сих пор ряд систем сигнализации, причем большинство из них принято в качестве стандарта на международном уровне ITU-T (ранее CCITT). Примеры систем сигнализации CAS:

1VF (One Voice Friequency) - одночастотная сигнализация;

2VF (Two Voice Friequency) - двухчастотная сигнализация (CCITT No. 4);

MVF (Multi Friequency Pulse) - многочастотная сигнализация (CCITT No. 5).

Сами названия этих систем говорят о способе передачи сигнальной информации - тональные и/или импульсные сигналы.

В системах CCS все сигнальные сообщения SM (Signalling Message) передаются по дуплексным каналам - звеньям сигнализации SL (Signalling Link) в составе пакетов данных, называемых сигнальными единицами SE (Signal Unit) . Это стало возможным после появления первых коммутационных станций с программным управлением SPC (Stored Programm Control) и цифровых систем передачи с импульсно-кодовой модуляцией PCM (Pulse-Code Modulation) . Часть функций таких станций вместе с пучками звеньев сигнализации SLS (Signalling Link Set) образуют логически отделенную от базовой сети связи сеть передачи данных с коммутацией пакетов данных (сигнальных единиц), называемую сетью сигнализации SN (Signalling Network) .

Пункт сигнализации - SP (Signalling Point) - это узел сети сигнализации, в котором реализованы части пользователей ОКС № 7.

Звено сигнализации - SL (Signalling Link) - средство передачи сигнальных единиц между двумя пунктами сигнализации.

Транзитный пункт сигнализации - STP (Signalling Transfer Point) - узел сети сигнализации без функций частей пользователей, осуществляющий только функции части передачи сообщений ОКС № 7.

Рисунок 3 - Режимы сети сигнализации.

Режимы сети сигнализации - связанный режим (Associated Mode) и квази-связанный режим (Quasi-Associated Mode) - пояснены на рис 3а и 3в соответственно.

Часть передачи сообщений - MTP (Message Transfer Part) является транспортной подсистемой ОКС № 7, предназначенной для надежной передачи сигнальных сообщений в правильной последовательности и без ошибок.

Части пользователей - UP (User Parts) функциональные блоки ОКС № 7, где генерируются и обрабатываются сигнальные сообщения. Примерами частей пользователей являются:

TUP - Telephone User Part;

ISUP - ISDN User Part;

MAP - Mobile Application Part.

Базовая функциональная схема ОКС № 7 приведена на рис. 4. На рис. 5 представлен пример обмена сигнальными сообщениями между двумя пунктами сигнализации в процессе установления/разъединения телефонного соединения:

- IAM (Initial Address Message) - содержит номерную информацию о вызываемом абоненте;

- SAM (Subsequent Address Message) - содержит дополнительную информацию, передается в случае необходимости;

- ACM (Address Complete Message) - содержит информацию о статусе вызываемого абонента (например, абонент свободен);

- ANC (Answer Charge) - определяет момент начала начисления оплаты;

- CLF (Clear Forward) - сообщение в прямом направлении о завершении вызова;

- RLG (Release Guard) - подтверждение завершения вызова в обратном направлении, разъединение соединения.

Рисунок 4 - Базовая функциональная схема ОКС № 7.

Рисунок 5 - Временная диаграмма установления/разъединения телефонного соединения по ОКС № 7.

#"520551.files/image006.gif">

Рисунок 6 - Формат значащей сигнальной единицы.

1. Signalling Information Field (SIF) - включает сигнальную информацию части пользователя и метку маршрутизации, которая применяется в части передачи сообщений MTP.

2. Service Information Octet (SIO) - указывет на принадлежность сигнальной информации конкретной части пользователя.

3. Length Indicator (LI) - содержит значение числа байт между полями LI и СК.

4. Check bits (CK) - проверочные биты для обнаружения ошибок передачи.

5. Error correction - состоит из четырех полей аналогичных используемым в протоколе HDLC и предназначенных для обеспечения повторных передач пакетов при обнаружении ошибок.

6. Flag (F) - обозначает начало и конец сигнальной единицы.

. Расчет сигнальной нагрузки

Упрощенный расчет сигнальной нагрузки, обслуживаемой звеном сигнализации, можно выполнить, используя следующие формулы :


,(байт) (4.2)

,(байт) (4.3)

Y - величина сигнальной нагрузки, (Эрл);

V - скорость передачи сообщений ОКС № 7 (8000 байт/с);

N - число вызовов в ЧНН;

pi , i = 1 … m - вероятность поступления вызова i -го типа;

qij , i = 1 … m , j = 1 … n - вероятность j -го состояния вызова i -го типа;

Li j - общий объем сигнальной информации, посылаемой в прямом направлении в j -ом состоянии вызова i -го типа (байт);

Li ′′j - общий объем сигнальной информации, посылаемой в обратном направлении в случае j-ого состояния вызова i-го типа (байт);

L ′ − средний объем сигнальной информации для всех состояний всех типов вызовов, посылаемой в прямом направлении (байт);

L ′′ − средний объем сигнальной информации для всех состояний всех типов вызовов, посылаемой в обратном направлении (байт);

m - число типов вызов (аналоговая телефония, ЦСИС и др.)

n - количество возможных состояний вызова (успешный вызов, абонент занят, абонент не отвечает).

Исходные данные для выполнения расчетов приведены в табл. 1, табл. 2.

Таблица 1 − Длина основных сообщений ISUP в октетах

Наименование сообщения

Сокращение

Длина в октетах



телефония

Начальное адресное сообщение: (c адресом вызывающего и вызываемого абонентов)


Запрос информации


Информация


Адрес полный



Соединение


Прохождение вызова


Приостановка


Возобновление


Разъединение


Освобождение




Таблица 2 − Распределение показателей вызовов

В данной курсовой работе при определении значений Li j , Li ′′j , можно принять следующее:

1. Расчет объема сообщений, передаваемых в прямом направлении (данные табл. 6).

Успешный вызов : передается сообщение IAM, а также сообщения REL и RLC с вероятностью 0,5 каждое. Следовательно:

Абонент занят : передаются сообщения IAM и RLC:

,

;

Абонент не отвечает : передаются сообщения IAM и REL:

,

.

2. Расчет объема сообщений, передаваемых в обратном направлении .

Успешный вызов : передается сообщение ACM, а также сообщения REL и RLC с вероятностью 0,5 каждое. Следовательно:

Абонент занят : передается сообщения REL:

Абонент не отвечает : передаются сообщения ACM и RLC:

;

.

Результаты расчетов заносятся в таблицу (табл. 3)

Таблица 3 - Расчет объемов передаваемых сообщений

Параметр

Значение



Телефонный вызов (аналоговый)

Успешный вызов56,5





Абонент занят



Абонент не отвечает


Успешный вызов34,5





Абонент занят



Абонент не отвечает



0,9(56,5·0,5+54·0,35+59·0,25)+0,1(56,5·0,5+54·0,35+59·0,25)= =0,961,9+0,161,9=61,9 (байт)

0,9(34,5·0,5+20·0,35+32·0,25)+0,1(34,5·0,5+20·0,35+32·0,25)= =0,932,25+0,132,25=32,25 (байт)

По формуле (4.1) рассчитывается величина сигнальной нагрузки, при неисправности транзитного пункта сигнализации STP B.

Рисунок 7 - Нагрузка, приходящаяся на звенья сигнализации

Любое изменение состояния сети сигнализации обычно влечет за собой модификацию текущей маршрутизации сообщений, поэтому происходит переход некоторых частей трафика сигнализации из одного звена сигнализации на другое. Поэтому количество вызовов в час наибольшей нагрузки между STP С и SP H составляет 50000+40000=90000.

Следовательно:

Между STP F и SP G количество вызовов в час наибольшей нагрузки равно 140000, следовательно:

Между STP F и SP Е количество вызовов в час наибольшей нагрузки равно 180000, следовательно:

Для учета перегрузок при расчете сети ОКС № 7 рекомендуется использовать величину максимальной сигнальной нагрузки, Эрл:

/////////////////////////////////////////Ymax= αY, (4.4)

где α принимает значение от 1 до 2 (в работе можно принять α = 1,5).

Ymax=1,50,29=0,44 (Эрл);

Ymax=1,50,46=0,69 (Эрл);

Ymax=1,50,59=0,88 (Эрл).

Если нагрузка звена сигнализации превышает 0,2 Эрл, необходимо организовывать параллельные звенья сигнализации (работа в режиме с разделенной нагрузкой). В этом случае количество звеньев сигнализации NЗС в пучке определятся исходя из максимальной сигнальной нагрузки Ymax и нормируемой нагрузки звена сигнализации 0,2 Эрл:

Nзс= Ymax / 0,2 , (4.5)

Nзс= 0,44 / 0,2=2,2;

Nзс= 0,88 / 0,2=4,4.

По результатам расчетов, составляются таблицы (табл. 4, табл. 5).

Таблица 4 − Величина сигнальной нагрузки Ymax

Заключение

В последнее время интерес к системе сигнализации ОКС №7 в России значительно возрос, и обусловлено это широким внедрением цифровых систем коммутации, поддерживающих ОКС №7, и созданием цифровых сетей связи на всех уровнях иерархии Взаимоувязанной сети связи Российской Федерации (ВСС РФ).

Стек протоколов ОКС-7 отталкивается от модели OSI и имеет только четыре уровня. Уровени совпадают с уровнями OSI 1 (физический), 2 (канальный) и 3 (сетевой). Уровень 4 ОКС-7 соответствует уровню 7 OSI. Уровни называются MTP () 1 , MTP 2 и MTP 3. Уровень 4 ОКС-7 содержит несколько различных пользовательских уровней , например Telephone User Part (TUP), ISDN User Part (ISUP), Transaction Capabilities Application Part (TCAP) и Signaling Connection and Control Part (SCCP).описывает транспортные протоколы, включая сетевые интерфейсы, обмен данными, обработка сообщений и маршрутизация их на верхний уровень. SCCP - это подуровень из других протоколов 4 уровня, и вместе с MTP 3 может быть назван Network Service Part (NSP). NSP обеспечивает адресацию и маршрутизацию сообщений без установления соединения (UDT) и сервис управления для других частей 4 уровня. TUP - это система сигнализации точка-точка для соединения звонков. ISUP - это ключевой протокол, предоставляющий канально-ориентированный протокол для установки, проключения и завершения соединения при звонке. TCAP используется для создания запросов к базе данных и используется при расширенной функциональности сети или как связующий протокол с интеллектуальными сетями (INAP), мобильными службами (MAP) и т.д.

В данном курсовом проекте было изучено:

−функционирование телекоммуникационной сети, при возникновении отказов/неисправностей;

−функциональное назначение уровней подсистемы передачи сообщений (МТР).

Исследовали порядок назначения маршрутов сигнализации; рассчитали сигнальную нагрузку, обслуживаемую звеном сигнализации. И получили, что величина сигнальной нагрузки зависит от числа вызовов в час наибольшей нагрузки, чем больше число вызовов в ЧНН, тем больше величина сигнальной нагрузки.

Использовали величину максимальной сигнальной нагрузки для учета перегрузок.

Обычно проектируют невысокое использование ОКС № 7 для передачи. Резервная производительность ОКС № 7 необходима для передачи команд управления сетью и обеспечения требуемого качества при мгновенном повышении интенсивности потока MSU, а также при появлении ошибок. Вызванные этими причинами перегрузки приводят к дополнительной задержке в передаче MSU и к уменьшению пропускной способности ОКС № 7.

Организовали параллельные звенья сигнализации, так как нагрузка звена сигнализации превысила 0,2 Эрл, и определили количество звеньев сигнализации в пучке, исходя из максимальной сигнальной нагрузки и нормируемой нагрузки звена сигнализации.

В процессе работы над курсовым проектом на тему: «Исследование параметров сигнального трафика в час наибольшей нагрузки в телекоммуникационной сети» получили, что ОКС№7 в настоящее время является универсальной системой сигнализации и обеспечивает эффективное функционирование современных сетей телекоммуникаций.

Литература

1. Аджемов А. С., Кучерявый А. Е. Система сигнализации ОКС № 7. -

2. Берлин А.Н. Телекоммуникационные сети и устройства БИНОМ. Лаборатория знаний, Интернет-университет информационных технологий - ИНТУИТ.ру,2008

Берлин А.Н. Терминалы и основные технологии обмена информацией

4. Гольдштейн Б. С, Ехриелъ И. М., Рерле Р. Д. Стек протоколов ОКС 7. Подсистема МТР. - М.: Радио и связь, 2003.

5. Гольдштейн Б. С. Сигнализация в сетях связи. - М.: Радио и связь, 1997.

Гольдштейн Б. С. Системы коммутации: Учебник для вузов. 2-е издание. - СПб: БХВ - Санкт-Петербург, 2004.

Гольдштейн Б. С., Ехриелъ И. М., Рерле Р. Д. Стек протоколов ОКС 7. Подсистема SCCP. - СПб.: БХВ - Санкт-Петербург, 2006.

Гольдштейн Б. С., Ехриелъ К. М., Рерле Р. Д. Стек протоколов ОКС 7. Подсистема ISUP. - СПб.: БХВ - Санкт-Петербург, 2003.

ГОСТ 2.105-95 ЕСКД. Общие требования к текстовым документам.

ГОСТ 2.106-68 ЕСКД. Текстовые документы.

М.: Радио и связь, 2002.

Росляков А. В. ОКС № 7: архитектура, протоколы, применение. - М.: Эко-Трендз, 2008 - 320 с.34.

13. Семенов Ю.А. Алгоритмы телекоммуникационных сетей. Часть 1. Алгоритмы и протоколы каналов и сетей передачи данных БИНОМ. Лаборатория знаний, Интернет-университет информационных технологий - ИНТУИТ.ру,2007

Семенов Ю.А. Алгоритмы телекоммуникационных сетей. Часть 2. Протоколы и алгоритмы маршрутизации в INTERNET БИНОМ. Лаборатория знаний, Интернет-университет информационных технологий - ИНТУИТ.ру,2007

Семенов Ю.А. Алгоритмы телекоммуникационных сетей. Часть 3. Процедуры, диагностика, безопасность БИНОМ. Лаборатория знаний, Интернет-университет информационных технологий - ИНТУИТ.ру,2007

16. Яковлев С. В. Методические указания по выполнению курсового проекта по дисциплине «Основы построения телекоммуникационных систем и сетей» для бакалавров по направлению 550400 «Телекоммуникации». Ставрополь, 2010.

В общем случае можно говорить о том, что благодаря внедрению общего канала сигнализации (ОКС) сеть связи становится более интеллектуальной. Создаются условия для оперативного управления сетью и адаптивной маршрутизации соединений. Следует отметить, что конфигурация сети ОКС не всегда повторяет конфигурацию самой сети связи. Это означает, что маршруты передачи пользовательской информации и информации сигнализации могут не совпадать. По своей сути сеть ОКС является вложенной пакетной сетью. Однако в терминологии ОКС пакет принято называть сигнальной единицей. Кроме того, вместо термина логического соединения, в ОКС используется термин - сигнальное соединение. В настоящее время в основном используется система сигнализации ОКС № 7, которая ориентирована на цифровую телефонную сеть. В качестве физического канала передачи используется цифровой канал со скоростью передачи 64 кбит/с. Сигнальная единица следует из пункта передачи SP А (Signalling Point) в пункт приема SP B и может проходить через один или несколько транзитных пунктов STP (Signalling Transfer Point).

Функционально модель ОКС имеет уровневую структуру. Учитывая, что ОКС разрабатывался значительно раньше модели взаимодействия открытых систем - ВОС (OSI - Open System Interconnection) , назначение уровней этих моделей полностью не совпадают. Остановимся на модели ОКС № 7 (рис. 6.1).

На четвертом уровне определены функции и процедуры для различных пользовательских частей. До настоящего времени существовали следующие пользовательские части:

телефонная пользовательская часть - TUP (Telephone User Part);

пользовательская часть передачи данных - DUP (Data User Part);

пользовательская часть цифровой сети интегрального обслуживания - ISUP (ISDN User Part);

прикладная часть техобслуживания и эксплуатации - OMAP (Operations and Maintenance Application Part).

Задачей пользовательской части является подготовка и обработка сообщений при обмене сигнальной информацией между узлами коммутации. В общем случае сообщение содержит код типа сообщения и параметры. Так например, в процессе проключения пользовательского канала, используются сообщения:

IAM - начальное адресное (00000001);

АСМ - окончания приема номера (00000110);

ANM - ответа вызываемого абонента (00001001);

Сформировав сообщение, пользовательская часть передает его части передачи сообщения - MTP (Message Transfer Part).

В функции третьего уровня МТР входит маршрутизация сигнальных единиц в сети ОКС, для чего на третьем уровне добавляются поля LABEL и SIO (рис. 6.2). Поле SIO (Service Information Octet) длиной байт является индикатором службы, т.е. пользовательской части ОКС № 7, которой адресована сигнальная информация. Поле LABEL содержит: код пункта назначения - DPС (Destination Point Code); код пункта отправления - OPC (Originating Point Code); код пользовательского канала CTC (Circuit Identity Code), для управления которым передается сигнальная единица, а также указание выбора сигнального звена, если между узлами коммутации имеется несколько сигнальных каналов. Усложнение систем и сетей связи усложняет и процессы сигнализации. Иногда возникает необходимость обмена сигнальной информацией через значительное число транзитных узлов коммутации, что предъявляет более жесткие требования к задачам маршрутизации и приводит к дополнительной загрузке пользовательской части транзитных узлов. В этом случае для обмена сигнальной информацией целесообразно устанавливать сквозные сигнальные соединения. Поэтому для расширения возможностей МТР и устранения отличий с моделью ВОС, в уровень 3 дополнительно включены функции установления и разрушения сигнальных соединений. Эти функции получили название части управления сигнальными соединениями - SCCP (Signaling Connection Control Part), а МТР, включая SCCP, - части сетевых услуг NSP (Network Service Part), как это показано на рис.6.1. Часть управления сигнальными соединениями поддерживает два вида сигнальных соединений: виртуальное и дейтаграмное. В обоих случаях речь идет о логических соединениях, а не о физических. Виртуальное сигнальное соединение устанавливается под управлением соответствующей пользовательской части, при этом определяется маршрут следования всех сигнальных единиц. Для установления сигнального соединения вызывающая SCCP A передает в сеть ОКС команду CR, которая содержит данные о протокольном классе, адрес вызываемой SCCP B и метку соединения (номер логического канала). В команде CR может содержаться и адрес SCCP A . В ответной команде СС содержится другая метка соединения (номер логического канала). Когда исходящая сторона получила команду СС, сигнальное соединение считается установленным. При обмене сигнальными единицами, SCCP A и SCCP B оперируют метками соединения. Разрушение сигнального соединения осуществляется по команде RLSD.

При дейтаграмном сигнальном соединении используется команда UDT. В этом случае не производится обмен метками соединений. Для маршрутизации используются коды пунктов отправления ОРС и назначения DPC, и каждая сигнальная единица маршрутизируется независимо.

Второй уровень МТР включает функции и процедуры управления передачей сигнальных единиц на одном звене сети ОКС. Эти функции обеспечивают достоверный обмен информацией между двумя сигнальными точками. Каждая сигнальная единица на втором уровне (рис. 6.2) обрамляется флагами F (01111110). Для обеспечения прозрачности цифрового потока в процессе передачи сигнальной единицы, между флагами после пяти следующих подряд “1” автоматически добавляется “0”, который при приеме удаляется (бит стаффинг). Детектирование возможных ошибок при передаче реализуется за счет 16 контрольных бит СК. Каждая сигнальная единица, передаваемая и ожидаемая, имеет звеньевые номера FSN и BSN, а также соответствующие биты индикации FIB и BIB. Кроме того, в поле LI указывается суммарная длина полей SIF, LABEL и SIO. При обнаружении ошибки в принятой сигнальной единице, она перезапрашивается путем передачи номера последней правильно принятой сигнальной единицы в поле BSN с инвертированным значением BIB. Значение FIB остается прежним. Передающая сторона в этом случае возвращается к передаче сигнальных единиц, начиная с номера, указанного в поле BSN, увеличенного на единицу. При этом инвертируется значение FIB.

На первом уровне определены все физические, электрические и функциональные характеристики звена ОКС, в которое включен канал обмена сигнальными сообщениями в оба направления одновременно. В звено сигнализации может быть включено и цифровое коммутационное поле, если сигнальный канал коммутируется. Характеристиками звена сети ОКС на первом уровне являются: скорость передачи, способ синхронизации, линейное кодирование, вероятность ошибки в процессе передачи и т.д.

Несмотря на мощные возможности рассмотренной системы сигнализации ОКС № 7, в таком виде она не может удовлетворить потребности сети GSM, так как рассчитана на то, что интеллект по обслуживанию вызовов сконцентрирован в узлах коммутации, и ее протоколы связаны с информационными каналами для передачи пользовательской информации. В сети GSM интеллект процесса обслуживания вызовов распределен между функциональными единицами и необходимо наличие нормативных положений относительно протоколов обмена инструкциями и данными между распределенными внутрисетевыми ресурсами (прикладными процессами). Для этого в рамках системы сигнализации ОКС № 7 введены транзакционные возможности - ТС (Transaction Capability) независимо от применений, которые добавляются к службам сетевого уровня модели ВОС (в нашем случае MTP плюс SCCP). Транзакционные возможности составляются из прикладной части транзакционных возможностей - TCAP (Transaction Capability Application Part) на 7 уровне модели ВОС и поддерживающих стандартных протоколов уровней 4 - 6.

Для поддержки сигнализации в сети GSM между ее функциональными единицами разработаны дополнительно к существующим две разновидности прикладных частей ОКС № 7: MAP (Mobile Application Part) и BSSAP (BSS Application Part). Использование возможностей пользовательских частей ОКС № 7 для сигнализации в сети GSM представлено на рис. 6.3. Прикладная часть МАР реализована в УКПС, АРПС, ВРПС и РИО. Она обеспечивает их взаимодействие между собой и состоит из ряда функциональных элементов ASE (Application System Elements), каждый из которых выполняет одну из задач по обмену сигнальной информацией (рис. 6.4). Учитывая, с одной стороны, функциональное построение сети GSM, а с другой стороны, особенности процесса обслуживания вызовов при организации взаимодействия УКПС, АРПС, ВРПС, РИО между собой наряду с NSP (MTP плюс SCCP) используется TCAP. При этом МАР может осуществлять управление несколькими диалогами одновременно между функциональными единицами сети.

Прикладная часть BSSAP обеспечивает взаимодействие УКПС и БС. При этом BSSAP для транспортировки сообщений использует только услуги NSP (MTP плюс SCCP). На нее возлагается управление обменом двумя группами сообщений: сквозными сообщениями через БС между УКПС и ПС; сообщениями между УКПС и БС. Это привело к тому, что прикладная часть BSSAP разделена на две функциональные части: прикладная часть сквозной передачи сообщений - DTAP (Direct Transfer Application Part); прикладная часть управления БС - BSSMAP (BSS Management Application Part). Сообщения DTAP и BSSMAP включаются в формат SCCP как поле данных, структура которого приведена на рис. 6.5. При этом: 7-й бит дискриминатора указывает прозрачно ли сигнальное соединение (“1” - да, “0” - нет), т.е. какой функциональной части BSSAP адресовано сообщение; 6-й и 7-й биты идентификатора канала - DLCI (Data Link Connection Identification) используются только функциональной частью DTAP для определения типа логического канала управления между ПБС и ПС (“00” - индивидуальный сигнальный D или быстрый ассоциированный А¢, “01” - медленный ассоциированный А); биты 0,1,2 идентификатора канала заключают в себе SAPI (Service Access Point Indicator), определяющей являются ли передаваемые данные сообщением сигнализации, техобслуживания или данными, адресованными второму уровню протокола LAP D.