Инжекторная горелка устройство. Инжекционные горелки низкого давления

Горелки, в которых образование газовоздушной смеси происходит за счет энергии струи газа, называют инжекционными . Основной элемент инжекционной горелки - инжектор, подсасывающий воздух из окружающего пространства внутрь горелок.

В зависимости от количества инжектируемого воздуха горелки могут быть с неполной инжекцией воздуха и с полным предварительным смешением газа с воздухом.

Горелки с неполной инжекцией воздуха. К фронту горения поступает только часть необходимого для сгорания воздуха, остальной воздух поступает из окружающего пространства. Такие горелки работают при низком давлении газа. Их называют инжекционными горелками низкого давления (рис. 3, а).

Основными частями инжекционных горелок являются регулятор первичного воздуха, форсунка, смеситель и коллектор (см. рис. 3).


Рис. 3. Инжекционные атмосферные газовые горелки:

а - низкого давления; б - горелка для чугунного котла; 1 - форсунка; 2 - инжектор; 3 - конфузор; 4 - диффузор; 5 - коллектор; 6 - отверстия; 7 - регулятор первичного воздуха

Регулятор первичного воздуха 7 представляет собой вращающийся диск или шайбу и регулирует количество первичного воздуха, поступающего в горелку. Форсунка 1 служит для превращения потенциальной энергии давления газа в кинетическую, т. е. для придания газовой струе такой скорости, которая обеспечивает подсос необходимого воздуха. Смеситель горелки состоит из трех частей: инжектора, конфузора и диффузора. Инжектор 2 создает разрежение и подсос воздуха. Самая узкая часть смесителя - конфузор 3, выравнивающий струю газовоздушной смеси. В диффузоре 4 происходят окончательное перемешивание газовоздушной смеси и увеличение ее давления за счет снижения скорости.

Из диффузора газовоздушная смесь поступает в коллектор 5, который и распределяет ее по отверстиям 6. Форма коллектора и расположение отверстий зависят от типа горелок и их назначения.

Распределительный коллектор горелок емкостных водонагревателей имеет форму окружности; у горелок проточных водонагревателей коллектор состоит из параллельно расположенных трубок; у агрегатов, имеющих удлиненную топку, коллектор удлиненной формы; у горелок для чугунного котла (рис. 3, б) коллектор в виде прямоугольника с большим числом мелких отверстий.

Инжекционные горелки низкого давления имеют ряд положительных качеств, благодаря которым их применяют в бытовых газовых приборах, а также в газовых приборах для предприятий общественного питания и других коммунально-бытовых потребителей газа. Инжекционные горелки используют также в чугунных отопительных котлах.

Основные преимущества инжекционных горелок низкого давления: простота конструкции, устойчивая работа горелок при изменении нагрузок; надежность и простота обслуживания; бесшумность работы; возможность полного сжигания газа и работа на низких давлениях газа; отсутствие подачи воздуха под давлением.

Важная характеристика инжекционных горелок неполного смешения - коэффициент инжекции - отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м3 газа необходимо 10 м3 воздуха, а первичный воздух составляет 4 м3, то коэффициент инжекции равен 4: 10 = 0,4.

Характеристикой горелок является также кратность инжекции - отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м3 сжигаемого газа инжектируется 4 м3 воздуха, кратность инжекции равна 4.

Достоинство инжекционных горелок - это их свойство саморегулирования, т.е. поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.

Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа перед горелкой можно только в определенных пределах.

Горелки с полным предварительным смешением газа с воздухом . Инжекция всего воздуха, необходимого для полного сгорания газа, обеспечивается повышенным давлением газа. Горелки полного смешения газа работают в диапазоне давлений от 5000 Па до 0,5 МПа. Их называют инжекционными горелками среднего давления и применяют в основном в отопительных котлах и для обогрева промышленных печей. Тепловая мощность горелок обычно не превышает 2 МВт. Основные трудности повышения их мощности - сложность борьбы с проскоком пламени и громоздкость смесителей.

Эти горелки дают малосветящийся факел, что уменьшает количество радиационной теплоты, передаваемой нагреваемым поверхностям. Для увеличения количества радиационной теплоты эффективно применение в топках котлов и печей твердых тел, которые воспринимают теплоту от продуктов горения и излучают ее на тепловоспринимающие поверхности. Эти тела называют вторичными излучателями. В качестве вторичных излучателей используют огнеупорные стенки тоннелей, стенки топок, а также специальные дырчатые перегородки, установленные на пути движения продуктов сгорания.

Горелки с полным предварительным смешением газа с воздухом подразделяют на два типа: с металлическими стабилизаторами и огнеупорными насадками.

Инжекционная горелка конструкции Казанцева (ИГК) состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадка и пластинчатого стабилизатора (рис. 4).


Рис. 4. Инжекционная горелка ИГК:

1 - стабилизатор; 2 - насадок; 3 - конфузор; 4 - форсунка; 5 - регулятор первичного воздуха

Регулятор первичного воздуха 5 горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси. Пластинчатый стабилизатор и проскока пламени в широком диапазоне 7 обеспечивает устойчивую работу горелки без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм при расстоянии между ними 1,5 мм. Пластины стабилизатора стягивают между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь.

В горелках с огнеупорными насадками природный газ сгорает с образованием малосветящегося пламени. В связи с этим передача теплоты излучением от факела горящего газа оказывается недостаточной. В современных конструкциях газовых горелок значительно повысилась эффективность использования газа. Малая светимость факела газа компенсируется излучением раскаленных огнеупорных материалов при сжигании газа методом беспламенного горения.

Газовоздушная смесь у этих горелок приготовляется с небольшим избытком воздуха и поступает в раскаленные огнеупорные каналы, где она интенсивно нагревается и сгорает. Пламя не вы ходит из канала, поэтому такой процесс сжигания газа называется беспламенным. Это название условное, так как в каналах пламя имеется.

Газовоздушная смесь подогревается от раскаленных стенок канала. В местах расширения каналов и вблизи от плохо обтекаемых тел создаются зоны задержки горячих продуктов сгорания. Такие зоны - устойчивые источники постоянного подогрева и зажигания газовоздушной смеси. На рис. 5 показана беспламенная панельная горелка. Поступающий в сопло 5 из газопровода 7 газ инжектирует необходимое количество воздуха, регулируемое регулятором первичного воздуха 6. Образовавшаяся газовоздушная смесь через инжектор 4 поступает в распределительную камеру 3, проходит по ниппелям 2 и поступает в керамические тоннели 1. В этих тоннелях происходит сжигание газовоздушной смеси. Распределительная камера 3 от керамических призм 8 теплоизолирована слоем диатомовой крошки, что сокращает теплоотвод из реакционной зоны.

Беспламенное сжигание газа имеет следующие преимущества: полное сгорание газа; возможность сжигания газа при малых избытках воздуха; возможность достижения высоких температур горения; сжигание газа с высоким тепловым напряжением объема горения; передача значительного количества теплоты инфракрасными лучами.

Существующие конструкции беспламенных горелок с огнеупорными насадками по конструкции их огневой части подразделяют на горелки с насадками, имеющие каналы неправильной геометрической формы; горелки с насадками, имеющие каналы правильной геометрической формы; горелки, у которых пламя стабилизируется на огнеупорных поверхностях топки.


Рис. 5. Беспламенная панельная горелка:

1 - тоннель; 2 - ниппель; 3 - распределительная камера; 4 - инжектор; 5 - сопло; 6 - регулятор воздуха; 7 - газопровод; 8 - керамические призмы

Наиболее распространены горелки с насадками правильной геометрической формы. Огнеупорные насадки таких горелок состоят из керамических плиток размером 65 х 45 х 12 мм. Беспламенные горелки называют также горелками инфракрасного излучения.

Все тела - источники теплового излучения, возникающего за счет колебательного движения атомов. При излучении тепловая энергия веществ превращается в энергию электромагнитных волн, которые распространяются от источника со скоростью, равной скорости света. Эти электромагнитные волны, распространяясь в окружающем пространстве, наталкиваются на различные предметы и легко превращаются в тепловую энергию. Величина ее зависит от температуры излучающих тел. Каждой температуре соответствует определенный интервал длин волн, излучаемых телом. В данном случае передача теплоты излучением происходит в инфракрасной области спектра, а горелки, работающие по этому принципу, называются горелками инфракрасного излучения (рис. 6).

Через сопло 4 (см. рис. 6, а) газ поступает в горелку и инжектирует весь воздух, необходимый для полного сгорания газа. Из горелки газовоздушная смесь поступает в сборную камеру 6 и далее направляется в огневые отверстия керамической плитки 2. Во избежание проскока пламени диаметр огневых отверстий должен быть меньше критической величины и составлять 1,5 мм. Выходящая из огневых камер газовоздушная смесь поджигается при малой скорости ее вылета, чтобы избежать отрыва пламени. В дальнейшем скорость вылета газовоздушной смеси можно увеличить (полностью открыть кран), так как керамические плитки нагреваются до 1000°С и отдают часть теплоты газовоздушной смеси, что приводит к увеличению скорости распространения пламени и предотвращению его отрыва.


Рис. 6. Горелки инфракрасного излучения:

а - схема горелки: 1 - рефлектор; 2 - керамическая плитка; 3 - смеситель; 4 - сопло; 5 - корпус; 6 - сборная камера; б, в и г - соответственно горелки ГИИ-1, ГИИ-8 и ПС-1-38

Керамические плитки имеют около 600 огневых цилиндрических каналов, что составляет около 40 % поверхности плиток.

Плитки соединяют друг с другом специальной замазкой, состоящей из смеси шамотного порошка с цементом.

Если инфракрасные горелки работают на газе среднего давления, то применяют специальные плиты из пористых жаропрочных материалов. Вместо цилиндрических каналов у них узкие искривленные каналы, которые заканчиваются расширяющимися камерами сгорания.

При сжигании газа в многочисленных каналах различных насадок происходит нагрев их внешних поверхностей до температуры около 1000 °С. В результате поверхности приобретают оранжево-красный цвет и становятся источниками инфракрасных лучей, которые поглощаются различными предметами и вызывают их нагрев.

На рис. 6, б... г показаны наиболее распространенные типы инфракрасных горелок. У горелок ГИИ-1 имеются 21 керамическая плитка, рефлектор и распределительная коробка. С помощью горелок ГИИ можно обогревать помещения и различное оборудование. Горелки используют и для обогрева открытых площадок (спортивные площадки, кафе, помещения летнего типа и т.д.).

Горелку ГК-1-38 успешно применяют для подогрева строящихся стен и штукатурки, обогрева людей, работающих в зимних условиях. Горелка может работать на природном и сжиженном газах.

Основной элемент инжекционной горелки - инжектор, подсасывающий воздух из окружающего пространства внутрь горелок. В зависимости от количества воздуха горелки могут быть с неполной инжекцией воздуха и с полным предварительным смешением газа с воздухом.

Горелки с неполной инжекцией воздуха. В таких горелках к фронту горения поступает только часть необходимого для сгорания воздуха, остальной воздух поступает из окружающего пространства. Такие горелки работают при низком давлении газа и называются инжекционными горелками низкого давления .

Основными частями инжекционных горелок являются регулятор первичного воздуха, форсунка, смеситель и коллектор.

Инжекционные горелки низкого давления имеют ряд положительных качеств, благодаря которым их применяют в бытовых газовых приборах, а также в газовых приборах для предприятий общественного питания и других коммунально-бытовых потребителей газа. Инжекционные горелки используют также в чугунных отопительных котлах.

Важная характеристика инжекционных горелок неполного смешения - коэффициент инжекции : отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м 3 газа необходимо 10 м 3 воздуха, а первичный воздух составляет 4 м 3 , то коэффициент инжекции равен 4: 10 = 0,4.

Характеристикой горелок является также кратность инжекции - отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м 3 сжигаемого газа инжектируется 4 м 3 воздуха, кратность инжекции равна 4.

Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа перед горелкой можно только в определенных пределах.

Достоинство инжекционных горелок - это их свойство саморегулирования, то есть поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.

Горелки с полным предварительным смешением газа с воздухом. Инжекция воздуха, необходимого для полного сгорания газа, обеспечивается повышенным давлением газа. Горелки полного смешения газа работают в диапазоне давлений от 5000 Па до 0,5 МПа. Их называют инжекционными горелками среднего давления и применяют в основном в отопительных котлах и для обогрева промышленных печей. Тепловая мощность горелок обычно не превышает 2 МВт.

Эти горелки дают малосветящийся факел, что уменьшает количество радиационной теплоты, передаваемой нагреваемым поверхностям. Для увеличения количества радиационной теплоты эффективно применение в топках котлов и печей твердых тел, которые воспринимают теплоту от продуктов горения и излучают ее на тепловоспринимающие поверхности. Эти тела называют вторичными излучателями. В качестве вторичных излучателей используют огнеупорные стенки тоннелей, стенки топок, а также специальные дырчатые перегородки, установленные на пути движения продуктов сгорания.

Горелки с полным предварительным смешением газа с воздухом подразделяют на два типа: с металлическими стабилизаторами и с огнеупорными насадками.

Инжещионная горелка конструкции Казанцева состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадка и пластинчатого стабилизатора (рисунок ниже).

Инжекционная горелка Казанцева

1 - стабилизатор; 2 - насадок; 3 - конфузор; 4 - форсунка; 5 - регулятор первичного воздуха

Регулятор первичного воздуха горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси. Пластинчатый стабилизатор обеспечивает устойчивую работу горелки без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм при расстоянии между ними 1,5 мм. Пластины стабилизатора стягивают между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь. В горелках с огнеупорными насадками природный газ сгорает с образованием малосветящегося пламени. В связи с этим передача теплоты излучением от факела горящего газа оказывается недостаточной.

В современных конструкциях газовых горелок значительно повысилась эффективность использования газа. Малая светимость факела газа компенсируется излучением раскаленных огнеупорных материалов при сжигании газа методом беспламенного горения.

Газовоздушная смесь у этих горелок приготавливается с небольшим избытком воздуха и поступает в раскаленные огнеупорные каналы, где она интенсивно нагревается и сгорает. Пламя не выходит из канала, поэтому такой процесс сжигания газа называется беспламенным. Это название условное, так как в каналах пламя имеется. Газовоздушная смесь подогревается от раскаленных стенок канала. В местах расширения каналов и вблизи от плохо обтекаемых тел создаются зоны задержки горячих продуктов сгорания. Такие зоны - устойчивые источники постоянного подогрева и зажигания газовоздушной смеси.

На рисунке ниже показана беспламенная панельная горелка. Поступающий в сопло из газопровода газ инжектирует необходимое количество воздуха, регулируемое регулятором первичного воздуха. Образовавшаяся газовоздушная смесь через инжектор поступает в распределительную камеру, проходит по ниппелям и поступает в керамические тоннели. В этих тоннелях происходит сжигание газовоздушной смеси. Распределительная камера теплоизолирована от керамических призм слоем диатомовой крошки, что сокращает теплоотвод из реакционной зоны.

Беспламенная панельная горелка

1 - тоннель; 2 - ниппель; 3 - распределительная камера; 4 - инжектор; 5 - сопло; 6 - регулятор воздуха; 7 - газопровод; 8 - керамические призмы

Беспламенное сжигание газа имеет следующие преимущества: полное сгорание газа; возможность сжигания газа при малых избытках воздуха; возможность достижения высоких температур горения; сжигание газа с высоким тепловым напряжением объема горения; передача значительного количества теплоты инфракрасными лучами.

Существующие конструкции беспламенных горелок с огнеупорными насадками по конструкции их огневой части подразделяют на горелки с насадками, имеющие каналы неправильной геометрической формы; горелки с насадками, имеющие каналы правильной геометрической формы; горелки, у которых пламя стабилизируется на огнеупорных поверхностях топки.

Наиболее распространены горелки с насадками правильной геометрической формы. Огнеупорные насадки таких горелок состоят из керамических плиток размером 65x45x12 мм. Беспламенные горелки называют также горелками инфракрасного излучения.

Все тела - источники теплового излучения, возникающего за счет колебательного движения атомов. Каждой температуре соответствует определенный интервал длин волн, излучаемых телом. В данном случае передача теплоты излучением происходит в инфракрасной области спектра, а горелки, работающие по этому принципу, называются горелками инфракрасного излучения (рисунок ниже).

Горелки инфракрасного излучения

а - схема горелки: 1 - рефлектор; 2 - керамическая плитка; 3 - смеситель; 4 - сопло; 5 - корпус; 6 - сборная камера; б, в, г - соответственно горелки ГИИ-1, ГИИ-8 и ГК-1-38

Через сопло газ поступает в горелку и инжектирует весь воздух, необходимый для полного сгорания газа. Из горелки газовоздушная смесь поступает в сборную камеру и далее направляется в огневые отверстия керамической плитки. Во избежание проскока пламени диаметр огневых отверстий должен быть меньше критической величины и составлять 1,5 мм. Выходящая из огневых камер газовоздушная смесь поджигается при малой скорости ее вылета, чтобы избежать отрыва пламени.

В дальнейшем скорость вылета газовоздушной смеси можно увеличить (полностью открыть кран), так как керамические плитки нагреваются до 1000 °С и отдают часть теплоты газовоздушной смеси, что приводит к увеличению скорости распространения пламени и предотвращению его отрыва.

Керамические плитки имеют около 600 огневых цилиндрических каналов, что составляет около 40 % поверхности плиток.

Плитки соединяют друг с другом специальной замазкой, состоящей из смеси шамотного порошка с цементом.

Если инфракрасные горелки работают на газе среднего давления, то применяют специальные плиты из жаропрочных пористых материалов. Вместо цилиндрических каналов у них узкие искривленные каналы, которые заканчиваются расширяющимися камерами сгорания.

При сжигании газа в многочисленных каналах различных насадок происходит нагрев внешних поверхностей каналов до температуры примерно 1000 "С. В результате поверхности приобретают оранжево-красный цвет и становятся источниками инфракрасных лучей, которые поглощаются различными предметами и вызывают их нагрев.

На рисунке б-г показаны наиболее распространенные типы инфракрасных горелок. У горелок ГИИ-1 имеются 21 керамическая плитка, рефлектор и распределительная коробка. С помощью горелок ГИИ можно обогревать помещения и различное оборудование. Горелки используют и для обогрева открытых площадок (спортивные площадки, кафе, помещения летнего типа и т. д.).

Горелку ГК-1-38 успешно применяют для подогрева строящихся стен и штукатурки, обогрева людей, работающих в зимних условиях. Горелка может работать на природном и сжиженном газах.

Горелка - это устройство, предназначенное для получения пламени необходимых тепловой мощности, размеров и формы. Все существующие конструкции газопламенных горелок можно классифицировать следующим образом:
1) по способу подачи горючего газа в смесительную камеру - инжекторные и безынжекторные;
2) по мощности пламени - микромощности (10-60 дм 3 /ч ацетилена); малой мощности (25-400 дм 3 /ч ацетилена); средней мощности (50-2800 дм 3 /ч ацетилена) и большой мощности (2800-7000 дм 3 /ч ацетилена);
3) по назначению - универсальные (сварка, резка, пайка, наплавка, подогрев); специализированные (только сварка или только подогрев, закалочные и пр.);
4) по числу рабочих пламен - однопламенные и многопламенные;
5) по способу применения - для ручных способов газопламенной обработки; для механизированных процессов.

Инжекторные горелки. Кислород через ниппель 1 инжекторной горелки проходит под избыточным давлением 0,1-0,4 МПа (1-4 кгс/см 2) и с большой скоростью выходит из центрального канала инжектора 8 (рис. 27). При этом струя кислорода создает разрежение в ацетиленовых каналах рукоятки 3, за счет которого ацетилен подсасывается (инжектируется) в смесительную камеру 10, откуда образовавшаяся горючая смесь направляется в мундшук 13 и на выходе сгорает. Инжекторные горелки нормально работают при избыточном давлении поступающего ацетилена 0,001 МПа (0,01 кгс/см 2) и выше.
Повышение давления горючего газа перед горелкой облегчает работу инжектора и улучшает регулировку пламени, хотя при этих условиях приходится прикрывать вентиль горючего газа на горелке, что может привести к возникновению хлопков и обратных ударов пламени. Поэтому при использовании инжекторных горелок рекомендуется поддерживать перед ними давление ацетилена (при работе от баллона) в пределах 0,02-0,05 МПа (0,2-0,5 кгс/см 2).
Инжекторные горелки рассчитывают таким образом, чтобы они обеспечивали некоторый запас ацетилена, т. е. при полном открытии ацетиленового вентиля горелки расход ацетилена увеличивался бы по сравнению с паспортным для. инжекторных горелок - не менее чем на 15%; для инжекторных резаков - не менее чем на 10% максимального паспортного расхода ацетилена.
На рис. 28 показаны в качестве примера конструкции инжекторных горелок средней мощности ГС-3 и малой мощности ГС-2 для сварки металлов. Горелки снабжают набором сменных наконечников, различающихся расходом газа и предназначаемых для сварки металлов разной толщины. Номер требуемого наконечника выбирают в соответствии с требуемой тепловой мощностью пламени, выраженной в дм 3 /ч ацетилена. К рукоятке горелки ГС-3 можно присоединять и другие наконечники, например многопламенные для подогрева, для пайки, вставные резаки для резки металла.


Для сварки и наплавки металлов большой толщины, нагрева и других работ, требующих пламени большой мощности, используют инжекторные горелки ГС-4 с наконечниками № 8 и 9:


В наконечниках ГС-4 инжектор и смесительная камера установлены непосредственно перед мундштуком. Горючий газ подается в инжектор по трубке, расположенной внутри трубки подачи кислорода. Этим предупреждается нагревание горючего газа и смеси отраженной теплотой пламени, что снижает вероятность обратных ударов пламени и хлопков при использовании пламени большой мощности. Горелка ГС-4 может работать на пропан-бутане, для чего снабжена двумя наконечниками с сетчатыми мундштуками, рассчитанными на расходы: № 8 - пропан-бутана 1,7-2,7, кислорода 6-9,5 м 3 /ч; № 9 - пропан-бутана 2,7-4,2, кислорода 9,5-14,7 м 3 /ч.

Мундштуки горелок малой мощности или имеющих водяное охлаждение изготовляют из латуни ЛС59-1. В горелках средней мощности мундштуки для лучшего отвода теплоты изготовляют из меди МЗ или хромистой бронзы Бр. Х0,5, к которой не так пристают брызги расплавленного металла. Для получения пламени правильной формы и устойчивого его горения выходной канал не должен иметь заусенцев, вмятин и других дефектов, а внутренняя поверхность канала должна быть чисто обработана. Снаружи мундштук рекомендуется полировать.
Горелки для газов-заменителей отличаются от ацетиленовых тем, что снабжены устройством для дополнительного подогрева и перемешивания газовой смеси до выхода ее из канала мундштука.
Серийно выпускаемые горелки ГЗУ-2-62 и ГЗМ-2-62М для этого имеют подогреватель и подогревательную камеру, расположенные на наконечниках между трубкой подвода горючей смеси и мундштуком (рис. 29). Часть потока смеси (5-10%) выходит через дополнительные сопла подогревателя и сгорает, образуя факелы, подогревающие камеру из коррозионностойкой стали. Температура смеси на выходе из мундштука повышается на 300-350°С и соответственно возрастает скорость сгорания и температура основного сварочного пламени. Горелки могут работать на пропан-бутан-кислородной и метан-кислородной смеси; ими можно сваривать стали толщиной до 5 мм (в отдельных случаях до 12 мм) с удовлетворительными показателями по производительности и качеству сварки.
Наконечники этих горелок рассчитаны на следующие расходы газов:


При переводе на пропан-бутан горелок, рассчитанных для работы на ацетилене, следует брать наконечник, на два номера больший, и ввертывать в него мундштук, на один номер больший, а инжектор - на один номер меньший, чем при сварке металла той же толщины на ацетилено-кислородной смеси.
Специальные наконечники. Для сварки в тяжелых условиях нагрева, например крупных чугунных отливок с подогревом, применяют специальные теплоустойчивые наконечники НАТ-5-6 и НАТ-5-7. В этих наконечниках мундштук и трубка снабжены теплоизоляционной прослойкой из асбеста, разведенного на воде или жидком стекле, и покрыты сверху кожухом из стали Х25Т. Они могут длительно работать без хлопков и обратных ударов. Для этих работ используют также обычные наконечники, снабженные дополнительной трубкой для подвода охлаждающего воздуха.
Безынжекторные горелки. В отличие от инжекторных в данных горелках сохраняется постоянный состав смеси в течение всего времени работы горелки, независимо от ее нагрева отраженной теплотой пламени. В инжекторных же горелках нагрев мундштука и смесительной камеры ухудшает инжектирующее действие струи кислорода, вследствие чего поступление ацетилена уменьшается и смесь обогащается кислородом. Это приводит к хлопкам и обратным ударам пламени, - приходится прерывать сварку и охлаждать наконечник.
Безынжекторные горелки, в которых ацетилен и кислород поступают в смесительное устройство под равными давлениями, при нагревании не меняют состава смеси, поскольку при нагревании мундштука если и уменьшается поступление газов в горелку, то оно одинаково как для кислорода, так и для ацетилена. Следовательно, относительное содержание их в смеси, т. е. состав смеси, остается постоянным. На рис. 30, а показана схема безынжекторной горелки, на рис. 30, б - схема устройства для питания безынжекторной горелки ГАР (равного давления) кислородом и ацетиленом через постовой беспружинный регулятор ДКР (см. рис. 23).
Горелка ГАР комплектуется семью наконечниками на расходы ацетилена 50-2800 дм 3 /ч. Каждый наконечник имеет смесительную камеру с двумя калиброванными отверстиями: центральным для
кислорода и боковым для ацетилена.


Камерно-вихревые горелки. Для некоторых процессов газопламенной обработки - нагрева, пайки, сварки пластмасс и т. п. не требуется высокой температуры ацетилено-кислородного пламени. Для этих процессов можно использовать камерно-вихревые горелки, работающие на пропано-воздушной смеси. В этих горелках вместо мундштука имеется камера сгорания, в которую поступают пропан и воздух под давлением 0,05-0,2 МПа (0,5-2 кгс/см 2). Пропан подается в камеру через центральный канал, а воздух, вызывающий также вихреобразованне, поступает по многозаходной спирали, обеспечивающей «закрутку» газовой смеси в камере сгорания. Продукты сгорания выходят через концевое сопло камеры сгорания с большой скоростью, образуя пламя достаточно высокой температуры (1500-1600°С). Горелки позволяют получать пламя с температурой 350-1700°С.
Горелки специальные. К таким горелкам относятся, например, многопламенные для очистки металла от ржавчины и краски; газовоздушные для пайки и нагрева, работающие на ацетилене и газах-заменителях; керосино-кислородные для распыленного жидкого горючего; многопламенные кольцевые для газопрессовой сварки; для поверхностной закалки; для пламенной наплавки; для сварки термопластов и многие другие.
Принципы устройства и конструкции их во многом аналогичны используемым для сварочных горелок. Отличие состоит в основном в тепловой мощности и размерах пламени или суммы пламен (при многопламенных горелках), а также размерах и форме мундштука.

Сварочная газовая горелка представляет собой специализированную конструкцию, в которой осуществляется перемешивание горючего газа или паров специальной жидкости с кислородом из окружающей среды. Благодаря этому происходит возникновение стабильного сварочного пламени требуемой мощности. В принципе, принято считать, что это оборудования является одним из главных рабочих инструментов газосварщика.

Разновидностей горелок для сварки довольно-таки много. Несмотря на то что принцип их работы примерно одинаковый, они могут обладать рядом особенностей:

  • Инжекторные и безынжекторные конструкции – они отличаются друг от друга по технологии подачи кислорода к участку горения;
  • Газовые или жидкостные. В первых для получения пламени требуемой температуры используется специальный горючий газ, а вторые работают на парах бензина или керосина;
  • Специализированные или универсальные, причем последние могут применяться для любых работ, связанных с резкой или сваркой металла;
  • Однопламенные и многопламенные дифференцируются в зависимости от потоков подаваемого пламени;
  • Машинные и ручные;
  • Газосварочные горелки могут классифицироваться по мощности: малая, средняя, высокая.

Принцип работы безынжекторной работы

Если сварочная горелка работает на высоком давлении и имеет инжектор, то ее конструкция будет значительно проще по сравнению с конструкцией, где давление значительно ниже. Технология ее работы следующая:

  • Кислород поступает в нее через специальные шейки, выполненные из резины, проходя через вентиль, а затем направляется в смеситель;
  • В смесителе весь поток разделяется на множество небольших струй и направляется в сопло смесителя. По такой же технологии он направляется в специальный вентиль;
  • Полученная смесь в сварочных горелках MIG-MAG проходит по газовому потоку значительного сечения, где завершается циркуляция, на выходе она получается наиболее однородной;
  • На трубке наконечника расположен мундштук, который производится из долговечной не окисляющейся меди. Смесь на выходе будет сразу полностью сгорать, причем температура получается довольно высокой, которая будет значительно выше по сравнению с температурой плавления металла.

Чтобы в горелке, предназначенной для газосварки, газовый поток должен выходить равномерно с максимально точно выверенной скоростью, причем смесь должна будет полностью сгорать. Если скорость выхода газа небольшая, то пламя может переходить в верхнюю часть горелки – это довольно опасно, так как внутри горелки зачастую случается взрыв этой смеси.

При чересчур сильной скорости пламя будет отрываться от мундштука, станет отходить все дальше и дальше от среза, что в конечном счете приведет к его затуханию. Для определения требуемой скорости, необходимо принимать во внимание несколько важных данных: из чего состоит горючая смесь, какой внутренний диаметр у сопла, как устроен мундштук. Рассчитать правильную скорость подачи горючего можно только при условии, если известны все эти данные.

Усредненным считается значение в пределах от 70 до 160 м/с. Чтобы в конечном счете на выходе получилась подходящая скорость, придется создать давление порядка 0,5 атмосферы, причем давление для газа или паров и кислорода примерно будет одним и тем же.

Инжекторные горелки

Устройство сварочной горелки подразумевает использование в качестве горючего ацетилен, водород или метан, причем ею очень легко пользоваться. Принцип работы следующий: кислород из баллона поступает через специальный вентиль, проходя через конус инжектора, и попадает в смесительную камеру. Через инжектор закачивается горючий газ и интенсивно перемешивается с кислородом. После этого сформированная смесь отправляется по трубке наконечника в мундштук. Во многом благодаря кислороду давление вырывающегося из сопла мундштука газа становится значительно меньше по сравнению с атмосферным.

Однако для качественного горения и получения нормальной температуры оно должно быть хотя бы 3,5 атмосферы. Стоит отметить, что инжекторная горелка обладает одним очень серьезным недостатком: состав горючей смеси остается непостоянным, что не позволяет обеспечить качественное и постоянное ее горение.

Несмотря на то что данное изделие работает на низких давлениях, его используют значительно чаще, нежели конструкции, рассчитанные на высокое давление. Устроена данная продукция несколько сложнее, так как в ней предусмотрен специальный блок охлаждения сварочной горелки. Дело в том, что низкое давление вызывает довольно сильный нагрев сопла и других элементов. Главное здесь - не допустить, чтобы камера, где образуется горючая смесь, не перегрелась и не взорвалась.

Особенности проведения сварочных работ с помощью газовой горелки

Прежде всего, газовые горелки отличаются тем, что они прекрасно подходят для полуавтоматических или автоматических сварных работ, когда сварная проволока подается без использования рук, что в значительной степени облегчает технологический процесс.

Благодаря автоматической сварке можно качественно проварить все труднодоступные участки, причем усилий придется прилагать минимальное количество. Отходов от таких работ минимальное количество. Сварной шов получается довольно прочным за гораздо меньший промежуток времени, нежели во время дуговой электросварки. Минусов у данной технологии не слишком много, они касаются, прежде всего, довольно высокой стоимости оборудования и комплектующих. Вся система отличается сложностью в плане устройства, продукция весьма тяжелая и громоздкая, поэтому перемещать ее с одного места на другое будет очень проблематично.

Технологический процесс сварки состоит из следующих этапов:

  • Участки свариваемых деталей нужно тщательно зачистить от всех следов ржавчины или коррозии. Можно сделать это с помощью специальной металлической щетки, насадки на угловую шлифовальную машину.
  • Обязательно следует обезжирить поверхность с помощью ТИГа или иных составов, иначе плавящийся электрод будет не слишком плотно прилегать к металлу;
  • Активируется газовая горелка, запускается полуавтоматический механизм подачи электрода и начинается непосредственная работа по соединению металлических элементов;
  • Обязательно следует установить скорость подачи электрода. Она зависит от типа свариваемых металлов, их толщины и целого ряда других факторов.

Как правильно обращаться с горелкой?

Перед тем как приступить к непосредственному выполнению работ, необходимо проверить, насколько хорошо работает инжекторная составляющая оборудования. Для этого к ниппелю, который подает кислород, подключают шланг кислородного редуктора. Осторожно поднимают давление в системе до рабочего.

Когда кислород будет проходить через инжектор, в ацетиленовом канале должно возникнуть разрежение. Если оно будет, то палец будет присасываться к ацетиленовому ниппелю. В этом случае подключают оба шланга и тщательно закрепляют их, только после этого можно поджигать горючую смесь и регулировать величину пламени.

При окончании работ сначала перекрывают вентиль ацетиленового баллона, а затем закрывают и кислородный вентиль. Если поступить наоборот, то может случиться удар огня в шланг, по которому подается ацетилен, что чревато взрывом. При соблюдении технологии работ удастся получить надежное соединение, которое будет долго сохранять свою прочность.